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Abstract 

Accurate photovoltaic (PV) power generation forecasting plays a pivotal role in enabling optimal grid dispatch operations by 

providing essential technical references for power system scheduling. To address the challenges of complex meteorological 

patterns and sudden environmental variations, a photovoltaic power forecasting model named the LSTM-KAN (Long Short-

Term Memory - Kolmogorov-Arnold Network) Hybrid Architecture is proposed, with an attention mechanism introduced to 

enhance model robustness. To investigate the correlation between Numerical Weather Prediction (NWP) features and power 

output, a multi-dimensional feature selection mechanism was integrated into the data preprocessing phase. To validate the 

superior performance of the proposed model, photovoltaic operational data from the Alice Springs region in Australia was 

employed for experimental verification, with comparative analysis conducted against conventional LSTM models in terms of 

both prediction error and operational stability.  Experimental results demonstrated that the LSTM-KAN model achieves 12.04% 

and 13.26% reductions in MAE and RMSE respectively compared to the baseline LSTM model when evaluated on the Dual 

dataset.

1 Introduction 

Currently, the pressing issues stemming from excessive 

consumption of conventional energy resources - including 

resource depletion, carbon emissions, and ecological 

degradation - demand urgent resolution. The development of 

green energy has emerged as a viable solution to mitigate 

overreliance on conventional energy. Although photovoltaic 

power plants require substantial capital investment during 

initial construction, their subsequent operational expenditures 

remain relatively modest, necessitating only routine 

maintenance to ensure stable functioning post-commissioning. 

However, photovoltaic generation exhibits high susceptibility 

to environmental fluctuations, posing challenges for grid 

management and practical implementation. As demonstrated 

by Rettger et al., cloud cover can reduce power output by 

approximately 10% compared with clear-sky conditions, while 

elevated panel surface temperatures induce additional power 

degradation[1]. Therefore, investigating the correlation 

between meteorological factors and photovoltaic output 

constitutes a critical technological prerequisite for commercial 

viability, underscoring the paramount importance of accurate 

photovoltaic power forecasting. 

 

Photovoltaic power forecasting methodologies primarily 

encompass statistical methods, physical approaches, and 

machine learning techniques. Statistical methods rely on 

historical data to construct predictive models, typically 

operating under the assumption that future photovoltaic output 

can be extrapolated from historical patterns. However, these 

methods exhibit limitations in handling extreme weather 

events and data outliers. Physical approaches leverage 

meteorological data and photovoltaic component parameters 

to formulate predictive models, yet require exhaustive input 

parameters that contribute to computational complexity. 

Machine learning techniques learn complex patterns of 

photovoltaic power output through training datasets, 

effectively capturing nonlinear relationships and intricate 

mappings between power generation and meteorological 

parameters. Representative approaches include Support 

Vector Regression (SVR) and Deep Neural Networks (DNNs) 

[2-3]. J Shi et al. investigated the application potential of deep 

learning in photovoltaic power forecasting, highlighting the 

synergistic integration between algorithmic frameworks and 

power generation system characteristics[4]. Chen et al. 

proposed a methodology employing Pearson correlation-based 

feature extraction for dimensionality reduction, thus 

alleviating the computational burden on Long Short-Term 

Memory (LSTM) models[5]. Liu et al. used the PCA method 

to process the input data for wind power generation prediction, 

reducing the dimension of the input variables and effectively 

screening the input variables that affect wind power 

generation[6].Wang et al. developed a hybrid architecture 

combining LSTM and Convolutional Neural Network (CNN) 

models, employing LSTM networks for temporal feature 

extraction and subsequently applying CNN architectures for 

spatial feature extraction, thereby improving the accuracy of 

time-series forecasting[7]. A. Agga et al. proposed a CNN-

LSTM hybrid architecture, utilizing CNN modules to extract 

localized features as input for LSTM networks, with empirical 

validation demonstrating superior performance in both 

localized and global forecasting compared to standalone 
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LSTM configurations, across temporal horizons ranging from 

24-hour to 7-day ahead forecasting. Quantitative results 

revealed that the proposed methodology achieved enhanced 

accuracy metrics relative to conventional LSTM-based 

benchmarks [8-9]. Lim et al. developed a CNN-LSTM 

architecture that initially employs CNN modules to classify 

meteorological conditions into clear-sky and cloudy categories, 

followed by training two distinct LSTM networks for 

specialized learning. This parallel computational framework 

demonstrated enhanced accuracy in power generation 

forecasting. Most machine learning methodologies are 

fundamentally extensions of the Multilayer Perceptron (MLP) 

paradigm[10]. MLP are fundamentally constructed by 

enveloping linear models with nonlinear activation functions 

to achieve transformations in nonlinear spaces, which 

necessitate increasing the number of hidden layers or enlarging 

parameter quantities to enhance prediction accuracy when 

handling intricate nonlinear relationships, thereby incurring 

elevated computational burdens. 

 

The KAN (Kolmogorov-Arnold Network) model was 

proposed by researchers Liu Z et al., originating from the 

Kolmogorov-Arnold Representation Theorem, which asserts 

that any multivariate continuous function can be decomposed 

into finite compositions and additive superposition of 

univariate continuous functions[11]. Within neural network 

architectures, this principle is manifested through dynamically 

optimized activation functions and data-driven learning 

mechanisms, in contrast to the static functional forms of 

conventional models. Empirical validation demonstrates that 

KAN achieves dual advantages of high predictive accuracy 

and enhanced interpretability, with its exceptional nonlinear 

learning capability being underscored by Liu Z et al. in their 

seminal work. This research direction has garnered increasing 

attention within the academic community. As demonstrated by 

C. J. Vaca-Rubio et al. in applying the KAN to satellite traffic 

prediction, the framework was found to require fewer 

parameters than MLP models while demonstrating superior 

predictive performance[12]. The LSTM-KAN (Long Short-

Term Memory – Kolmogorov-Arnold Network) model 

proposed by R. Xu et al. integrates the memory retention 

capability of LSTM with the nonlinear representational 

capacity of KAN, effectively mitigating the limitations of 

individual models in processing complex datasets associated 

with dam deformation prediction, while enhancing model 

interpretability[13]. Jiang et al. applied the KAN to power grid 

load forecasting, highlighting its superior interpretability as a 

white-box model[14], thereby demonstrating its applicability 

to photovoltaic power output prediction domains requiring 

stringent reliability and safety requirements. 

 

To address the aforementioned challenges, we propose a 

hybrid LSTM-KAN model specifically designed for 

photovoltaic time-series data analysis and forecasting. The 

proposed network adopts a parallel structure of branched 

LSTM-KAN model. To mitigate computational complexity, 

eliminate redundant computational expenditure, and suppress 

spurious noise, a multi-feature selection mechanism is 

employed for dimensionality reduction. The LSTM module is 

selected for its demonstrated efficacy in capturing temporal 

power variation patterns, while the KAN network leverages 

data-driven spline functions and basis functions to 

autonomously learn intricate nonlinear patterns, exhibiting 

enhanced representational capacity with mathematical 

guarantees. Independent feature extraction from both 

pathways is concatenated to form composite features, with a 

dynamic fusion gate adaptively allocating feature weights. By 

synergistically integrating LSTM's temporal dependency 

modeling and KAN's nonlinear mapping capabilities, the 

model achieves superior comprehensive performance. 

 

The principal contributions of this study are summarized as 

follows: 

 

The model named LSTM-KAN Hybrid Architecture was 

proposed. To solve the problem of insufficient nonlinear fitting 

of the prediction model, the KAN network is added on the 

basis of the prediction of the LSTM network, and the feature 

weights are dynamically allocated in combination with the 

attention mechanism. A model named LSTM-KAN is 

proposed. In the feature fusion part of this model, a dynamic 

fusion gate is introduced to enable the model to reasonably 

allocate the feature weights of the two networks. During the 

implementation process, compared with the benchmark LSTM 

model, the MAE and RMSE of this model decreased by 27.6% 

and 1.4% respectively. 

 

A preprocessing framework integrating multi-dimensional 

feature selection mechanisms is proposed. To solve the 

problem of large computational volume and multiple feature 

dimensions of the model, multiple feature selection 

mechanisms are proposed to jointly screen NWP features. In 

the data preprocessing part, the feature space dimension is 

effectively reduced while retaining highly predictive features, 

thereby improving the computational efficiency. 

 

2 Theoretical Foundation 

2.1 Physical and statistical prediction methodologies 

Physical methodologies employ solar irradiance and 

photovoltaic component operation parameters for forecasting, 

requiring detailed geolocation parameters (latitude/longitude) 

of PV plants and localized irradiance measurements[15], this 

methodology obviates the need for extensive historical 

datasets, rendering it particularly suitable for performance 

evaluation of newly constructed photovoltaic facilities. 

Statistical approaches necessitate extensive historical datasets, 

including plant power outputs, meteorological records, and 

operational histories, to discern site-specific generation 

patterns. These methods exhibit limited portability and are 

constrained by static prediction frameworks that fail to capture 

dynamic environmental perturbations. 

2.2 Long short-term memory 

Machine learning methodologies exhibit superior predictive 

flexibility compared to conventional physical and statistical 

forecasting approaches, enabling dynamic capture of 

temporal-spatial feature dependencies. A representative 

example is the LSTM network, originally proposed by 
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Hochreiter et al, which constitutes a specialized variant of 

Recurrent Neural Networks (RNNs). LSTM addresses the 

vanishing gradient problem through gating mechanisms[16]. 

When photovoltaic power inputs exhibit significant 

intermittency, traditional RNN architectures—particularly 

those incorporating sigmoid-activated or tanh-activated 

units—may fail to effectively learn inter-data temporal 

dependencies under such conditions[17]. The LSTM cell 

architecture incorporates gating functions, which effectively 

address long-term dependency challenges and demonstrate 

superior performance in managing multivariate time-series 

data. Through its specialized tri-gate structure—comprising 

input gates, forget gates, and output gates—LSTM 

successfully mitigates gradient vanishing/explosion issues 

inherent in RNNs, thereby enhancing long-sequence 

dependency modeling[18-19]. The architecture diagram of the 

LSTM network illustrates in Fig. 1, where i_t denotes the 

output of the input gate, f_t represents the output of the forget 

gate, o_t  corresponds to the output of the output gate. 

 

Fig. 1 LSTM network architecture diagram 

 

The core mathematical equations and operational mechanisms 

are delineated as follows: 

( )1t f t t t ff W x U h b −= + +                                                        (1) 

( )1t i t i t ii W x U h b −= + +                                                                    (2) 

( )t c t c tc tanh W x U h= +                                                                   (3) 

1 1t t t t tc f c i c− −= +                                                                     (4) 

( )1t o t o t oo W x U h b −= + +                                                             (5) 

( )t t th o tanh c=                                                                                     (6) 

The forget gate determines the retention proportion of 

historical memory, where: W_f  , U_f  denotes the weight 

matrix, b_f  represents the bias term, and σ signifies the 

Sigmoid activation function with output constrained to [0,1]. 

The input gate filters newly acquired information for state 

updating,while the cell state update integrates outputs from 

both forget and input gates to refresh long-term memory 

storage. The output gate regulates information exposure from 

current cell states to downstream layers. LSTM networks 

demonstrate exceptional performance in multivariate time-

series data analysis, particularly in domains such as natural 

language processing, energy forecasting, and industrial 

monitoring, where they have gained widespread adoption. 

This motivates our selection of LSTM architecture to capture 

temporal dependencies among feature variables. 

2.3 Kolmogorov-Arnold network 

KAN is an innovative model derived from the Kolmogorov-

Arnold Representation Theorem. The theorem's core assertion 

states: Any multivariate continuous function f defined on a 

bounded domain can be decomposed into a finite composition 

of univariate continuous functions combined through additive 

superposition. Specifically, for a smooth function, this 

decomposition can be explicitly formulated as shown in 

Equation 7. 

( )
2 1

,

1 1

n n

i i j i

i j

f x x
+

= =

 
=   

 
                                                                 (7) 

The innovation of KAN lies in its integration of learnable 

activation functions on network edges, where univariate spline 

functions replace the fixed linear weights of conventional 

architectures. These activation functions are dynamically 

refined during training to achieve precise approximation of 

complex functional relationships. As illustrated in Fig. 2, KAN 

adopts a two-layer architecture where edge-based activation 

functions (denoted by rectangular boxes) directly perform 

nonlinear transformations on input features. This design 

overcomes the limitations of traditional MLP architectures that 

rigidly couple linear combinations with fixed activation 

functions. 

 

 

Fig. 2 KAN network architecture Diagram 

 

KAN innovatively incorporates learnable activation functions 

on network edges, where these functions are dynamically 

adapted during training through univariate spline functions 

that effectively replace conventional network weight 

parameters[20]. Diverging from conventional methodologies, 

this approach not only preserves architectural flexibility but 

also achieves precise approximation of complex functional 

mappings. 
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3 Proposed Method 

3.1 LSTM-KAN Hybrid Architecture 

This paper proposes a novel LSTM-KAN predictive model 

that synergistically integrates LSTM's temporal dependency 

modeling with KAN's dynamic nonlinear representation 

capabilities. The LSTM module employs a two-layer 

architecture for temporal feature extraction from photovoltaic 

data, while the KAN module utilizes residual networks for 

enhanced feature learning. A dynamic fusion gate 

concatenates outputs from both streams, adaptively adjusting 

their contributions through gating mechanisms. Furthermore, 

an attention mechanism is incorporated to adaptively allocate 

feature weights, enabling robust predictions under complex 

environmental disturbances. As depicted in Fig. 3, the 

architecture comprises three core components: 

 

Fig. 3 LSTM-KAN Hybrid Architecture 

3.2 LSTM-KAN hybrid architecture 

This study employs a hybrid feature selection methodology to 

construct a multidimensional analytical framework based on 

NWP parameters, Utilizing a four-dimensional evaluation 

system comprising Pearson correlation coefficients, Mutual 

Information Criteria (MIC), Simple Linear Regression (SLR), 

and Recursive Feature Elimination (RFE). As shown in Table 

1, the system reveals the influence of parameters such as 

Wind-S(Wind-Speed),T(Temperature), H(humidity), G-

I(Global Irradiance), D-I(Diffuse Irradiance), Wind-D(Wind 

Direction), Rainfall , R-G-T(Radiation Global Tilted) and R-

D-T(Radiation Diffuse Tilted) on photovoltaic power. 

Geometric optimization of the evaluation results is achieved 

through vector synthesis of feature scores. The calculation for 

mula for the Score is expressed as the normalized result 

of√𝑃2 +𝑀2 + 𝑆2 + 𝑅2.In predictive model construction, the 

precise identification of photovoltaic-relevant features 

coupled with the elimination of noisy and redundant variables 

can significantly enhance the predictive accuracy and 

operational reliability of the system. 

 

Table 1. Feature Correlation Scores of Meteorological 

Parameters Across Three Datasets (Pearson/MIC/SLR/RFE) 

 

Data

set 

Features Pears

on 

MIC SLR RFE Score 

San 

Yo 

T 0.420 0.208 0.177 0.286 0.214 

H -0.46 0.184 0.208 0.571 0.300 

G-I 0.982 1.452 0.965 0.857 0.883 

D-I 0.590 0.991 0.348 0.714 0.559 

Wind_D 0.009 0.115 0.000 0.143 0.050 

Rainfall -0.06 0.025 0.004 0.000 0.000 

R-G-T 0.997 1.744 0.994 1.000 1.000 

R-D-T 0.628 1.028 0.395 0.429 0.533 

Dual 

Wind-S 0.618 0.286 0.382 0.250 0.372 

T 0.500 0.220 0.250 0.625 0.395 

H -0.48 0.220 0.232 0.375 0.307 

G-I 0.951 1.236 0.904 0.750 0.934 

D-I 0.521 0.993 0.272 0.500 0.589 

Wind-D -0.07 0.145 0.005 0.125 0.066 

Rainfall 0.072 0.003 0.000 0.000 0.000 

R-G-T 0.964 1.000 0.930 1.000 1.000 

R-D-T 0.552 0.839 0.305 0.875 0.690 

BP 

Sola

r 

T 0.401 0.212 0.161 0.714 0.358 

H -0.46 0.199 0.211 0.143 0.222 

G-I 0.973 1.377 0.946 0.857 0.924 

D-I 0.570 0.961 0.325 0.571 0.554 

Wind-D 0.007 0.121 0.000 0.429 0.170 

Rainfall -0.06 0.035 0.004 0.000 0.000 

R-G-T 0.990 1.505 0.981 1.000 1.000 

R-D-T 0.606 1.013 0.368 0.286 0.542 

 

As evidenced in Table 1, distinct feature selection 

methodologies yield divergent evaluations for identical 

features. hrough multi-method integrated evaluation, key 

features are more reliably identified. For instance, 

Temperature exhibits consistently high correlation coefficients 

with photovoltaic power output in the DKASC system[21]. 

Whereas Humidity demonstrates a Pearson correlation 

coefficient of -0.456, indicating a negative correlation with 

power generation--though its influence remains non-negligible. 

Notably, Global_irradiance and Radiation_Global_Tilted 

exhibit statistically significant correlations, while Wind 

Direction and Rainfall show weaker predictive associations. 

Following normalization, features with composite scores 

exceeding 0.1 are selected as primary inputs for both LSTM 

and KAN modules. 

3.3 Dual-Branch processing layer and dynamic fusion gate   

The proposed LSTM-KAN model processes preprocessed 

features through dual pathways: a bidirectional LSTM branch 

captures dynamic evolution patterns of environmental 

parameters via temporal gating mechanisms, whereas the 

KAN branch employs adaptive spline networks. Specifically, 
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after feature selection and standardization (e.g., temperature, 

global irradiance), the first LSTM layer utilizes forget gates to 

filter irrelevant historical data and input gates to regulate 

update intensity, thereby modeling hysteresis effects in 

parameters like humidity. The second LSTM layer captures 

long-term dependencies through cell state propagation, while 

an attention layer computes time-step-specific hidden state 

weights via learnable parameter matrices, enhancing feature 

representation at critical temporal nodes (e.g., daily solar 

irradiance peaks). In the KAN pathway, adaptive spline 

networks construct nonlinear mappings using B-spline basis 

functions. Each neuron fits complex feature-power 

relationships (e.g., saturation characteristics in irradiance-

power curves). Attention mechanisms dynamically weight 

input features to prioritize critical factors like temperature 

anomalies, and residual connections stabilize deep network 

training by fusing raw features with high-order representations. 

A dynamic fusion gate adaptively allocates weights between 

the dual pathways through learnable gating functions 

(Equations 8-9). 

 

 ( )( )ReLU ;g c lstm kan c gg W W h h b b=   + +                          (8) 

( )1lstm kanh g h g h=  + −                                                               (9) 

ℎ𝑙𝑠𝑡𝑚 is the temporal· vector extracted by the LSTM, ℎ𝑘𝑎𝑛 is 

the feature vector from the KAN, 𝑊𝑐 represents the projection 

matrix for the concatenated vect or, 𝑊𝑔  is the matrix for 

generating gating scalars, 𝜎  denotes the Sigmoid activation 

function. 

 

4 Experiments and Results Analysis 

4.1 Experimental setup 

This study utilizes three photovoltaic datasets from the 

DKASC system in Alice Springs, Australia: San Yo (ground-

mounted fixed-tilt, January 1, 2018 - September 1, 2018), Dual 

(dual-axis tracking, March 1, 2015 - July 31, 2015), BP Solar 

(roof-mounted fixed-tilt, January 20, 2018 - July 31, 2018). 

The datasets record parameters including current, power, 

temperature, humidity, global horizontal irradiance 

(G_irradiance), and direct normal irradiance (D_irradiance) at 

5-minute intervals. Experimental validation was conducted by 

comparing the performance of the proposed LSTM-KAN 

model against classical LSTM and standalone KAN 

architectures. All models were trained using the Mean Squared 

Error (MSE) loss function with an Adam optimizer (learning 

rate: 1e-3, batch size: 1024, epochs: 1000). Input features were 

standardized via Z-score normalization and split into training-

test sets with an 8:2 ratio. 

4.2 Evaluation Metrics 

To analyze the predictive performance of different algorithms 

across datasets, we select MAE (Mean Absolute Error), RMSE 

(Root Mean Square Error), and R² (Coefficient of 

Determination) as evaluation metrics. MAE provides the 

average level of prediction bias, MRSE reveals the stability of 

the prediction, and R2 reflects the degree of model fit. 

i 1

N

i iy y
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N
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−

=


                                                                                (10) 
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In the above formulas: N is the total number of samples, i is 

the counting variable, y_i is the true value, (y_i )  ̂is the model's 

predicted value and y ̅ is the sample mean of the dependent 

variable. 

4.3 Evaluation metrics 

Experimental results on the San Yo dataset demonstrate that 

LSTM-KAN model achieves a marginal improvement in MAE 

compared to standalone LSTM. However, with the 

incorporation of attention mechanisms, the LSTM-KAN-A 

model reduces MAE and RMSE by 27.6% and 1.4%, 

respectively, compared to the baseline LSTM model, and also 

outperforms LSTM-KAN model. This indicates that 

introducing attention mechanisms enhances the dynamic 

adjustment of weights between LSTM model and residual 

networks. Furthermore, on the more complex Dual dataset, 

LSTM-KAN model reduces MAE, RMSE, and R² by 12.04%, 

13.26%, and 1.34%, respectively, compared to standalone 

LSTM model, while LSTM-KAN-A model exhibits superior 

performance over LSTM-KAN model after attention 

integration. Table 2 compares the predictive performance 

(MAE, RMSE, R²) of the four models across three distinct 

datasets. 

 

Table 2. Predictive Performance Comparison of Four Models 

 

Dataset Predictive 

Model 

MAE/KW RMSE/KW R2/% 

San Yo 

LSTM 0.0623 0.0972 0.9978 
KAN 0.1499 0.1845 0.992 
LSTM-

KAN 
0.0621 0.1119 0.9971 

LSTM-

KAN-A 
0.0451 0.0958 0.9979 

Dual 

LSTM 1.1574 2.2416 0.9487 

KAN 1.2201 2.193 0.9509 

LSTM-

KAN 

1.0181 1.9441 0.9614 

LSTM-

KAN-A 

0.9144 1.7873 0.9674 

BP 

Solarl 

LSTM 0.0456 0.1043 0.9941 

KAN 0.0588 0.1077 0.9937 

LSTM-

KAN 

0.0446 0.0963 0.9949 

LSTM-

KAN-A 

0.0339 0.0928 0.9953 
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Fig 4 to 6 compare the prediction results of four models against 

actual photovoltaic power across different datasets, with one 

representative day selected for each comparison. Taking the 

San Yo dataset as an example, the predictions of all four 

models on the August 28 test set are closely aligned with 

ground truth values. However, as evidenced by the zoomed-in 

views, the LSTM-KAN-A model most accurately tracks the 

actual power output. 

 

Fig. 4 Experimental Comparison Curves for the San Yo 

Dataset 

 

Fig. 5 Experimental Comparison Curves for the Dual Dataset 

 

Fig. 6 Experimental Comparison Curves for the BP Solarl 

Dataset 

5 Conclusion 

To address photovoltaic power prediction challenges, this 

study proposes an LSTM-KAN Hybrid Architecture by 

integrating the KAN with superior nonlinear approximation 

capabilities. The proposed framework incorporates attention 

mechanisms to adaptively allocate feature weights, thereby 

enhancing robustness against transient disturbances (e.g., 

irradiance fluctuations and cloud occlusion events). 

Additionally, it employs multi-criteria feature selection 

mechanisms to jointly screen NWP features, effectively 

reducing model parameter dimensionality. Experimental 

validation demonstrates the LSTM-KAN model's superior 

performance on the DKASC photovoltaic system data from 

Alice Springs, Australia, showing promising potential for 

engineering applications in renewable energy dispatch systems, 

such as photovoltaic power prediction and grid integration. 
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