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Abstract 

Bearings play a critical role in rotating machinery, directly determining the safety and operational health of equipment. 
However, with the advancement of industrial society, bearing failures due to malfunctions have become increasingly 
prominent.Therefore, this study proposes an integrated model for bearing fault diagnosis by optimizing two key parameters of 
the Least Squares Support Vector Machine (LSSVM) using a combination of the MGO moss growth optimization algorithm 
and the PSO particle swarm algorithm: the regularization parameter and the kernel parameter. The high-dimensional feature 
vectors from the output layer of a two-dimensional convolutional neural network (2D-CNN) are used as input for the LSSVM. 
This model demonstrates higher accuracy and automation. 

1 Introduction 

With the development of industrial technology, research on 
bearing fault diagnosis has been continuously deepening, 
and one of the most commonly used methods is 
convolutional neural networks (CNN)[1].Convolutional 
neural networks in deep learning can process large amounts 
of data and effectively extract data features.Hoang et al. 
proposed a feature-free bearing fault diagnosis method based 
on convolutional neural networks (CNNs).1-D vibration 
signals are converted into 2-D data, referred to as vibration 
images. The vibration images are then fed into the CNN for 
bearing fault classification[2]. This method effectively 
identifies the fault damage categories of bearings, but the 
model may perform poorly due to overfitting when data is 
scarce.Wang et al. proposed a method for bearing fault 
diagnosis using a multi-attention one-dimensional 
convolutional neural network (MA1DCNN)[3]. MA1DCNN 
can adaptively recalibrate the features of each layer and 
enhance the feature learning of fault pulses. The network 
incorporates multiple attention modules, with each layer 
adding additional parameters. The JAM module significantly 
increases the weight calculation of channels and time 
through cascaded EAM and CAM.However, when the 
number of JAM layers exceeds five, the diagnostic accuracy 
decreases, and the high complexity may lead to 
overfitting.Zhang et al. proposed a fault diagnosis method 
based on deep learning[4]. The model adopts a hybrid 
architecture of one-dimensional convolutional neural 
networks (1DCNN) and support vector machines (SVM) to 
achieve dynamic adaptive feature extraction through 
1DCNN and input the optimized feature vectors into the 
classifier.In this process, the particle swarm optimization 
(PSO) algorithm is introduced to adaptively adjust the 
hyperparameters of SVM, constructing a composite 
classification system that integrates deep feature learning 
and intelligent parameter optimization. However, SVM 

requires solving convex quadratic programming (QP) 
problems, with a time complexity of ( )2O n or higher,
resulting in slower training speeds. 

1D-CNN can process raw time series data but struggle to 
capture frequency-domain information or time-frequency 
features. 2D-CNN can simultaneously extract features from 
both the time domain and the frequency domain (or other 
transform domains). Bearing fault signals are typically 
transformed into two-dimensional images using short-time 
Fourier transform (STFT), wavelet transform (CWT), or 
time-frequency analysis. 2D-CNNs can better capture local 
patterns and spatial relationships within these 
images.Furthermore, 2DCNNs perform more effectively in 
complex fault patterns, extracting richer fault features from 
time-frequency maps. Combined with the powerful 
expressive capabilities of deep learning models, they 
typically achieve higher diagnostic accuracy[5][6][7][8].Zhang 
et al. proposed a method for diagnosing rotary machine 
imbalance faults by combining time-frequency feature 
oversampling (TFFO) with convolutional neural networks 
(CNN)[9]. They used synthetic minority oversampling 
technique (SMOTE) to expand the minority samples to 
achieve TFFO, obtaining a balanced dataset that was then 
input into an improved 2DCNN based on LeNet-5 to achieve 
fault diagnosis.This paper proposes a bearing fault diagnosis 
model combining 2DCNN with MGO_PSO-LSSVM. An 
optimization algorithm combining MGO and PSO is used to 
optimize the two parameters of LSSVM. LSSVM transforms 
the inequality constraints in SVM into equality constraints, 
converting the optimization problem into solving a system of 
linear equations, thereby avoiding the complex quadratic 
programming issues in traditional SVM. The optimization 
objective of LSSVM is more explicit,minimizing the mean 
squared error, making the parameter optimization objective 
more intuitive. Optimal values can be quickly determined 



 2 

through cross-validation or grid search. In bearing fault 
diagnosis, LSSVM combined with CWT time-frequency. 

features can rapidly classify different fault types, achieving 
higher computational efficiency than SVM. 
 

2 Methodology 

2.1Continuous wavelet transform (CWT) 
Continuous Wavelet Transform (CWT)[10] uses wavelet 
basis functions and adjusts the scale factor and time shift 
factor of the wavelet basis functions to analyze the 
characteristics of signals at different frequency scales and 
time positions. Compared with the short-time Fourier 
transform (STFT), CWT is more flexible. The mathematical 
expression of CWT is: 
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In this equation, represents the scaling factor, represents the 
translation factor, and equation (2) represents the selected 
wavelet basis function. 
 
2.2Convolutional Neural Network (CNN) 
Convolutional Neural Network[11] is a deep learning model 
mainly composed of convolution layers, pooling layers, and 
fully connected layers, which performs well in fields such as 
image recognition. 

2.2.1 Convolutional Layer:The convolution layer is the core 
component of CNN, consisting of multiple convolution 
kernels that extract features from the input data through 
convolution operations.The mathematical expression for 
convolution operations is: 
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Among them, input
ix represents the local features of the 

−i th convolutional layer input; ijk and jb are the weight 
matrix and bias term corresponding to the −j th  
convolution layer, respectively; jM is the set of input feature 

maps, and out
jx is the output feature map.After convolution, a 

nonlinear activation function is typically used to introduce 
nonlinearity. 

2.2.2 Pooling Layer:Pooling layers reduce the 
dimensionality of feature maps, which reduces computation 
while preventing overfitting and improving network 
robustness. Pooling is typically divided into average pooling 
and max pooling. 

2.2.3Fully Connected Layer:The fully connected layer maps 
the feature maps extracted by the convolution layer and 
pooling layer to the target space. The maxsoft  function 
is typically used for classification tasks during output. The 
mathematical expression for the maxsoft  function is: 
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the output values of neurons in the fully connected layer. 
 
2.3MGO_PSO Optimization Algorithm 
Moss Growth Optimization (MGO)[12] is a novel 
meta-heuristic algorithm inspired by the growth process of 
moss. MGO develops a creative mechanism called 
“determining wind direction,” which utilizes the positional 
relationship between most individuals and the optimal 
individual to determine the evolutionary direction of all 
individuals in the population, effectively avoiding the 
problem of getting stuck in local optima.This study 
combines the MGO moss growth optimization algorithm 
with the PSO particle swarm optimization algorithm[13] to 
develop an optimized algorithm for bearing fault diagnosis. 
This algorithm is used to optimize two key parameters of 
LSSVM and minimize classification error. The optimized 
algorithm formula is as follows: 
Particle Velocity: ( ) { }i 0 0 i 1,2,....= ∀ ∈，V N       (5) 
Global Optimal Position: 
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Hybrid Update Strategy: For each iteration { }1,2,....∈t T , 
the update rule for each particle i is: 
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where [ ]dim

1 0,1∈r is a uniform random variable and ⊗
denotes the Hadamard area.  
Boundary Constraints: ( )( ) clip ( ), ,′ ′=i iX t X t lb ub      (9) 
Adaptability Assessment and Updating: 
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N is the number of particles; T is the maximum number of 
iterations; dim is the dimension of the search space; lb and
ub are the lower and upper bounds of the variables, and
( )g t is the global optimal position at the t iteration.This 

algorithm combines a dynamic weight adjustment 
mechanism with the speed update strategy of particle swarm 
optimization (used every 3 iterations) and a direct 

https://zhida.zhihu.com/search?content_id=250232305&content_type=Article&match_order=1&q=%E5%B0%BA%E5%BA%A6%E5%9B%A0%E5%AD%90&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NDExNTUzMjYsInEiOiLlsLrluqblm6DlrZAiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNTAyMzIzMDUsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.mFkBxyvZT0mwf-eiL7dYDQvw4AhhRBjdU27t9v9Uh5g&zhida_source=entity
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displacement strategy guided by the global optimum, 
thereby enhancing local exploration capabilities while 
maintaining population diversity. 
 
2.4Least Squares Support Vector Machine (LSSVM) 
Least Squares Support Vector Machine[14] transforms the 
optimization problem of SVM into a constrained quadratic 
programming problem and uses the least squares method for 
optimization and solution, thereby handling nonlinear 
classification and regression problems. 
The optimization objective formula is as follows: 
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The Lagrange multiplier method is given by the following 
formula: 
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In this equation, ia represents the Lagrange multiplier, 
which is also the support value. 
Solve for the optimal conditions using the following 
formula: 
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Solve the dual problem using the following formula: 
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3 Model Establishment 

This paper establishes a hybrid model combining CNN and 
optimized LSSVM, which is efficient and robust, capable of 
achieving high-precision diagnosis under different operating 
conditions and complex fault scenarios. The CNN part is 
responsible for feature extraction, while LSSVM uses an 
optimization algorithm combining MGO and PSO to adjust 
parameters and improve classification performance.By 
extracting multi-level features through a convolutional 
neural network (CNN), the model introduces an optimization 
algorithm combining MGO and PSO to dynamically adjust 
the kernel parameters of LSSVM, overcoming the efficiency 
bottleneck of traditional parameter tuning and improving 

classification accuracy.By combining the deep features of 
CNN with the statistical learning advantages of LSSVM, the 
model achieves high accuracy in fault classification tasks 
and converges quickly on the test set. When the training data 
scale is limited, the model enhances its generalization ability 
through batch normalization and Dropout technology, 
effectively alleviating the overfitting problem in small 
sample scenarios. Its structural model is shown in Fig. 1. 

 
Fig. 1 Model structure diagram 

This paper uses continuous wavelet transform (CWT) to 
convert the original vibration signal into a time-frequency 
map, inputs the time-frequency image into a 
two-dimensional convolutional neural network (2D-CNN) 
for adaptive fault feature extraction, takes the results of the 
fully connected layer as input for the least squares support 
vector machine, and uses a combined MGO and PSO 
algorithm to optimize the two key parameters of LSSVM to 
complete the multi-level classification task. 
 
3.1Continuous wavelet transform (CWT) 
This paper employs color three-channel time-frequency 
images generated using continuous wavelet transform. 
Wavelets are selected as wavelet basis functions due to their 
excellent time-frequency localization properties, making 
them suitable for analyzing non-stationary signals. A total of 
256 wavelets of different scales are generated, and the 
wavelet center frequencies are obtained along with the scale 
parameters, ultimately yielding the scale sequence and its 
corresponding frequencies.By loading the original vibration 
signal data, the signal is extracted from each sample, the 
wavelet coefficient matrix is calculated, and the wavelet 
coefficients are processed using absolute values. A 
time-frequency plot is plotted, and all images are uniformly 
scaled to 64×64×3 (RGB three channels) to meet the 
subsequent CNN input requirements. 
 
3.2 2DCNN-LSSVM 
The input layer receives the time-frequency maps generated 
by continuous wavelet transform. The first convolutional 
layer uses a convolutional kernel with 16 channels to extract 
local features. The second convolutional layer uses a 
convolutional kernel with 32 channels to capture more 
complex spatial patterns.Each convolutional layer uses the 
LeakyReLU activation function. The LeakyReLU activation 
function has a small positive slope when 0<x . Compared to 
the ReLU activation function, LeakyReLU avoids the issue 
of neuron death, allowing gradients to propagate. Its formula 
is as follows: 

, 0
LeakyReLU( )

, 0
>

=  ≤

x x
x

ax x
                (17) 
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Batch normalization is performed to improve stability. It 
also includes a Dropout layer with a dropout rate of 0.1, 
which means that 10% of the neurons are discarded to 
prevent overfitting. The pooling layer is max pooling, which 
gradually reduces the feature map size and enhances 
translation invariance.The fully connected layer flattens the 
multi-dimensional feature maps into vectors, which are then 
fed into the LSSVM module. The kernel function of the 
LSSVM module uses radial basis functions (RBF) to map 
features to a high-dimensional space, with the formula as 
follows: 

 
2

2( , ) exp
2σ

 −
= −  

 

‖ ‖i j
i j

x x
K x x           (18) 

By adjusting the kernel parameters (γ: regularization 
coefficient, σ²: kernel width) using the MGO_PSO algorithm, 
the classification error is minimized. The model structure 
diagram is shown in Fig. 2. 

 
Fig. 2 2DCNN-LSSVM model structure diagram 

4 Results 

To validate the performance of the fault diagnosis model 
adopted in this study for common bearing faults, this paper 
uses the bearing fault dataset from Case Western Reserve 
University (CWRU) [15]. The CWRU dataset includes: 
Ball faults: As a critical internal component of bearings, ball 
faults can directly interfere with the smooth operation of the 
bearing. Their vibration signals typically exhibit 
high-frequency characteristics in spectral analysis. 
Inner race (Inner Race) faults: Damage to the inner race 
alters the dynamic characteristics of the bearing system. The 
corresponding vibration signals are primarily low-frequency 
components, but as the damage worsens, the signal 
amplitude and frequency distribution exhibit significant 
nonlinear changes. 
Outer race (Outer Race) failure: This type of failure often 
causes instability in equipment operation. Through 
frequency domain analysis, characteristic frequency 
components related to the failure location can be observed, 
and the presence of such components can serve as criteria 
for outer race damage. 
Normal operating condition (Normal): Data from fault-free 
operation serves as a baseline reference. By comparing and 
analyzing the data, the distinctive features of signal 
differences under different fault modes can be effectively 
identified, providing a theoretical basis for fault diagnosis. 
 
4.1Preprocessing of experimental data 
The drive end bearings of the CWRU motors are SKF 
6205-2RS, which were damaged by EDM, with artificial 

damage on the inner, ball and outer races of the bearings. 
The damage points on the outer ring were located at 3, 6 and 
12 o'clock respectively. The vibration signals were collected 
by accelerometers at a sampling frequency of 12 kHz under 
loads of 0, 1, 2, and 3 HP and at speeds of 1797 r/min, 1772 
r/min, 1750 r/min, and 1730 r/min, respectively. This 
experiment was conducted at 12 kHz sampling frequency 
and the bearing data were collected at a rotational speed of 
1797 r/min and at 0, 1, 2, and 3 HP load conditions. The 
operating conditions cover four categories: Normal, Inner 
Race Fault, Outer Race Fault, and Ball Fault. Among them, 
each type of fault is set to 0.007, 0.014 and 0.021 inches 
wide three damage levels, a total of 10 states. The size of the 
fault is 0.007 inches ball fault named B007, inner ring fault 
named IR007, outer ring fault named OR007, normal 
bearing named Normal, and so on the damage degree of 
0.014 inches and 0.021 inches.The experimental setup of the 
dataset is shown in Fig. 3. The generated time-frequency 
plots are shown in Fig. 4. 

 
Fig. 3 Data set experiment settings 

Its components are: a 1.5 kW (2 horsepower) electric motor; 
a torque sensor/encoder; a power tester; and an electronic 
controller. 

 
Fig. 4 Time-frequency diagram 

 
4.2Experimental Validation 
The model used in this study achieved an average 
small-batch accuracy of 99.92% after several rounds of 
training, with a final small-batch accuracy of 100%, a 
small-batch distortion of 52.2713 10−× , and a base learning 
rate of 0.0010. The accuracy plot is shown in Fig. 5(a), and 
the confusion matrix is shown in Fig.5(b). 

 
a. Accuracy chart  
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b. Matrix confusion diagram 

Fig. 5 test results of CNN-MGO-LSSVM 
Compared to the 1DCNN-SVM model, the mini-batch loss 
value of the 1DCNN-SVM model on this test set is 0.0064, 
with a base learning rate of 0.0010 and an accuracy rate of 
99.6667%. The accuracy rate plot and confusion matrix of 
the 1DCNN-SVM test set are shown in Fig. 6(a) and Fig. 
6(b) below.As can be seen, the model adopted in this study 
performs well in sample generation, with a significantly 
higher accuracy rate than the 1DCNN-SVM model, and its 
loss value is significantly lower than that of the 
1DCNN-SVM model, indicating that the model's 
performance and generalization ability have been 
improved.Upon examining the confusion matrix, the 
accuracy rate for the 10 fault detection cases in the 
confusion matrix of the model used in this study is 100%, 
which is clearly superior to the confusion matrix of the 
1DCNN-SVM model. 

 
a. 1DCNN-SVM Accuracy chart 

 
b. 1DCNN-SVM Matrix confusion diagram  

Fig. 6 test results of 1DCNN-SVM 
According to the two network models shown in Fig. 7(a) and 
Fig. 7(b), where 10 colors represent 1 normal bearing state 
and 9 fault states, comparing the model used in this study 
with the 1DCNN-SVM model, it can be seen that the model 
used in this study is ideal in terms of class separation and 
class compactness, with all categories clearly separated and 
the distances between classes more obvious. 

 
a. This study uses the t-SNE plot of the model 

 
b. 1DCNN-SVM model t-SNE plot 

Fig. 7 Comparison of T-SNE for different data feature 
processing methods 

5 Conclusion 

This paper addresses the issue of bearing fault diagnosis by 
proposing a hybrid diagnostic model based on a 
two-dimensional convolutional neural network (2D-CNN) 
and an optimized least squares support vector machine 
(LSSVM). The original one-dimensional vibration signal is 
converted into a three-channel time-frequency image using 
continuous wavelet transform (CWT). The 2D-CNN is then 
employed to adaptively extract deep spatio-temporal 
features.and combines the MGO lichen growth optimization 
algorithm and PSO particle swarm algorithm to dynamically 
optimize the regularization parameter (γ) and kernel 
parameter (σ²) of LSSVM, effectively addressing the 
bottlenecks of low efficiency and susceptibility to local 
optima in traditional parameter tuning. The 2D-CNN 
employs a two-layer convolutional structure (3×3 and 5×5 
convolutional kernels) combined with LeakyReLU 
activation functions and batch normalization 
techniques,gradually compressing feature dimensions 
through maximum pooling layers, with the high-dimensional 
features output by the fully connected layer serving as input 
for LSSVM. The LSSVM module employs a radial basis 
kernel function (RBF) to map features to a high-dimensional 
space, and uses the MGO and PSO hybrid optimization 
algorithm to search for the optimal parameter combination 
globally, significantly improving classification performance. 

The experiment was conducted using the bearing dataset 
from Case Western Reserve University (CWRU), covering 
10 operating conditions (including normal conditions and 
different damage diameters of the inner ring, outer ring, and 
rolling elements).The results validated the model's excellent 
generalization ability and robustness. t-SNE visualization 
analysis further showed that the features extracted by the 
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model exhibit significant inter-class separability and 
intra-class compactness in low-dimensional space, indicating 
its superior discriminative ability in high-dimensional 
feature mapping.Additionally, the model effectively 
mitigates overfitting risks in small-sample scenarios by 
incorporating a Dropout layer (dropout rate of 0.1) and batch 
normalization techniques. 
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