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Wave energy converters (WECs) face significant challenges in control performance due to system nonlinearity, dynamic
parameter coupling, and reliance on costly physical sensors. To address these issues, this paper proposes a sensorless control
strategy that combines an Extended Kalman Filter (EKF)-based excitation force estimation with Model Predictive Control
(MPC). The EKF estimates excitation forces in real time using measurable buoy motion states—namely, heave velocity and
displacement—eliminating the need for direct wave force measurements. The estimated forces are then integrated into an MPC
framework to address parameter coupling among hydrodynamics, power take-off (PTO) damping, and generator load.
Simulation results demonstrate that the proposed method achieves comparable control accuracy to conventional MPC strategies
based on known excitation inputs, while significantly reducing system complexity and sensor costs.

1 Introduction

Under the dual pressures of global climate crisis response and
energy transition, renewable energy technologies have become
the core driver for reshaping human energy systems. Wave
power generation, as a renewable energy source, offers clean
and sustainable characteristics that effectively reduce
dependence on fossil fuels. Its development not only mitigates
global climate change but also promotes optimization and
transformation of energy structures [1]. Additionally, the
widespread availability of wave energy resources in coastal
regions provides new possibilities for local economic
development and energy self-sufficiency. Wave Energy
Converters (WECs) are recognized as effective tools for
capturing ocean wave energy [2].

However, existing control strategies often exhibit inefficient
energy conversion and system stability issues under irregular
wave conditions. In recent years, numerous control
strategies—such as impedance matching [3]and optimal
velocity tracking [4]—have been proposed to optimize WEC
energy conversion. Although these methods perform well in
specific cases, they rely heavily on accurate modeling and
degrade significantly under wide wave frequency variations.
Thus, the adaptability and robustness of current approaches
remain limited [5]. Model Predictive Control (MPC) has
attracted growing attention due to its intuitive design
principles, ability to handle multi-variable systems, and strong
performance in managing nonlinear constraints.

One of the main problems in MPC applications is the accurate
prediction of the wave excitation force, which is a key input in
the dynamic modeling of WEC systems, and which is usually
unpredictable and varies with the waves [6]. For example, in
[7] a pressure sensor is used to measure the total wave force
minus the radiative and viscous forces to obtain an
approximate excitation force, while in [8] the wave excitation
force is assumed to be a known quantity.

This paper proposes a linear regression Kalman filter-based
method for predicting wave excitation forces, aimed at
enhancing traditional model predictive control by replacing
the need for real-time measurement and prediction of wave
excitation forces during MPC operation., with the simple and
easy-to-measure velocity information. Simulation results show
that the performance of this method is very close to the
traditional MPC control method based on known future
excitation force information.

The mathematical model of the point absorbing wave energy
converter is developed in Section II. The proposed control
strategy is appropriately derived in Section III. The results of
this study are presented in Section IV. Finally, some
conclusions are drawn in Section V.

2. Methodology

2.1 Equation of motion

The focus of this study is a point-absorbing WEC, shown in
Fig. 1. It includes three components: A buoyant structure



positioned at the sea surface, an energy conversion mechanism
(PTO), and a stationary base structure.
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platform

Fig. 1 Schematic diagram of a point absorber wave energy
converter (WEC)

The WEC extracts energy from the relative heave motion of
the floating body. The mathematical representation of the
floating device's motion dynamics is expressed through the
following relationship:

V()= Fo (04 Fy (0-F ()-Fu ) (D
Here, z represents the vertical displacement of the float near
its equilibrium position, M denotes the float's mass, Fy, is the
power take-off (PTO) force, and Fj,, F,,4 correspond to the
hydrostatic and radiative forces, respectively, as shown in the
equation below:

F,(1)=K,z(1)

F., (t):mm'z'(t)+J:hr (1=2)2(1)dr

where m,, refers to the extra mass at an infinite frequency, h,
is the radiative convolution term, and K}, is the fluid stiffness,
expressing the convolution term in the radiative force in state
space:
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where A,., B, , C, are the correlation matrices, which can be

calculated by NEMOH [9], and x,. is the radiative subsystem
state.
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2.2 Model predictive control
By integrating equations (1) to (4), the dynamic model of the
point absorber WEC can be derived as follows:

(M +m,(0)i(t)+C.x, — K x(t) =u(t) + w(t)
x, (1)=4x (t)+Bz(t)

The system can be represented using a linear time-invariant
state-space model, which is formulated as:

{x (t) = A,x, (t)+Bu(t)+ B,w(t)
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Where: x ()=[z() 2(1) x ()] .v.0=[z0) 0] .

u(t) = Foo () , w(t) = F, (1) -
For the deployment of the model predictive control (MPC)
strategy, the continuous-time state-space representation

requires discretization. The resulting discrete-time formulation
is mathematically defined as:

{g(lﬁ-l) = Ad)_c(k)+Bdu(k)+Bdw(k)
y(k)=C,x()

here: 4, =" B, = [ ¢*"dzB, .C,=C, T is th
where: 4, =e™", d—oe B, ,C,=C,,Tis the

sampling time.

An incremental representation is used in the state vectors and
the input increments are used as decision variables in the state
space model, which in turn creates the MPC prediction model.
The discrete state space expression using the incremental form
is:

(N

{x(k+1) = Ax(k)+ BAu(k)+B,w(k) ®

v (k)= Cx(k)
The current input state x(k):[x(k) u(k—l)]T and output
states are y(k) =[v(k) u(k-1)]" .
s v
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At time step k, the prediction model forecasts system outputs
over a prediction horizon of N steps:

~ T

Y=[y(k+1),y(k+2),,y(k+N)] )
Upcoming wave excitation force can be mathematically
represented as:

Where: 4 = {

WZ[VIA//{’VIA//{+1’""VIA//{+N:|T (10)

The anticipated control signal variations within the prediction
horizon are formulated as:

AU =[AU(k).AU (k+1), AU (k+N)] (1)
The formula for calculating I} is:
Y =Gx(k)+H,AU+H W (12)

2.3Estimation of excitation force

As outlined by equations (8) and (9), successful deployment of
model predictive control (MPC) in wave energy conversion
systems demands real-time access to hydrodynamic excitation
force forecasts spanning the entire prediction horizon to ensure
optimal control actions. Existing wave parameter acquisition
methods usually rely on costly specialized instruments (e.g.,
contact wave height monitors or distributed pressure sensing
arrays), which make it difficult to directly access the dynamic
wave loads acting on the device. In addition, the need for real-
time prediction of wave excitation forces further increases the
system's hardware arithmetic burden in terms of dynamic
modeling and real-time computation.

Additional control devices not only increase the installation
costs of Wave Energy Converters (WECs), reducing their
economic feasibility, but also introduce additional
uncertainties, thereby compromising the reliability of WECs
under real ocean conditions. In this context, it becomes



essential to replace the excitation force with measurable
physical quantities. Compared to excitation forces, position
and velocity sensors offer greater cost-effectiveness, durability,
and reliability, making them more suitable for large-scale
applications. However, sensor data is often affected by noise
and interference, which can impair the accuracy and stability
of the system. To resolve this limitation, the schematic
diagram in Fig. 2 illustrates the integration of: we introduce
the Extended Kalman Filter (EKF) to denoise the raw sensor
data and enhance the accuracy of the float's velocity and
position measurements. EKF effectively removes random
noise from the sensor data, providing more accurate dynamic
information. Subsequently, a linear regression analysis is
employed to establish the relationship between the float's
velocity and the excitation force. This regression model is then
used to replace the excitation force information required for
Model Predictive Control (MPC) with the processed velocity
data, thereby simplifying the system structure and enhancing

its reliability.

Measurement of velocity and displacement
information of the float by means of
sensors x (k)

l

Processing of sensor data via EKF

l

Obtaining excitation force information
from processed velocity data based on
linear regression £, .

Enter the loop iteration to update
the system input U (k)according to
Eq. (27) and obtain the optimal

control input sequence

Applying the optimal
input sequence

Fig. 2 Flowchart of MPC control for EKF-based excitation
force estimation

The nonlinear system model for the floating body motion
under EKF is defined as:

X = f(xk—l sUp )+ Wi

z, :h(xk)+vk (13)
where f(+) and h(-) denote the state and output (measurement)
functions, respectively. The vectors xj_q, Up_1, and wy_4
represent the estimated state, input, and process noise at time
k—1. The measurement function h(-) maps the estimated state
vector x;,, and the measurement noise vector vy, while z,
refers to the estimated output vector.

Once the EKF processes the velocity and displacement signals,
these are used to reconstruct the empirical equations to
determine the wave excitation force, along with the float's rise
and sinking rates. Linear regression examines the relationship
between two variables, x and y. It is commonly used to fit an
empirical straight line to an ideal sample. Suppose that for each
value of:

YI.~N(a+,Bxi,02) (14)

Where a, 8, 02 and are unknown parameters that do not
depend on. Denoted as:

g =Y —(a+px),(i=12,-,n) (15)

The parameters a and f§ are estimated using the least squares
method, which allows the construction of the empirical
regression equation for Y in relation to x.

2.4 Implementation methods
Based on the modeling of the response relationship between
pendant velocity and wave excitation force, the floating body
pendant velocity is set as a predictor variable, and a linear
regression method is used to construct an empirical
relationship model between the two. Within the MPC
framework, a dataset of float heave velocities is collected from
the point absorber system, and a linear mapping between
velocity and excitation force is established as:

F,. (t)=b+az(1) (16)

where a and b are regression parameters fitted on the basis of
measured data.

Combining formulas. (6)(16) yields a linear regression-based
kinetic model of the point-absorbing wave energy converter,
which is expressed as:

(M+mw)2(t)+_(|:hr(t—r)z'(t)dr+Khz(t):

u (t) + az'(t)

The updated linear time-invariant state-space model is give

(17
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Y. (t) =C.x, (t)
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Where: 4,, = K, a e
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The updated discrete state-space equation is as follows:
{EL (k+1) = Ayyx (k) + Bu(K) "
YL (k) = Cdﬁ(k)

Where: 4,, =", B,, = [ e*"drB,, C,, =C
ere:A4,, =¢€ , Ld—oe o, L, =C_.

Under the MPC paradigm, the dynamical system formulation
employs the control input variation u(k) as the optimization
parameter, governed by the discrete-time state transition
equation:

{xL (k+1)=4,x, (k)+B,Au, (k) 20)

Y. (k):CLxL (k)



At each time step k, the prediction model projects system
outputs over a future horizon of N steps:
A T
Y, =y, (k+1),y, (k+2),,y, (k+N)] (21)

Predict the incremental sequence of control quantities in the
time domain:

AU, =[ AT, (k).AU, (k+1).-+-,a0, (k+N)] 22)

The expression for computing Y is:

Y, =G,x, (k)+H,AU, (23)
GLAL !
G A*
Where: G, = L >
GLALN
C,B, 0 0
C, 4B, C,B ’ :
L= : .. 0
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2.4 Optimization formulation

In the predictive control of a wave energy device (WEC), the
peak energy that can be captured by the system in the time
domain T corresponds to the mechanical energy output of the
power take-off unit (PTO), which is quantified by the
expression:

t+T

E,==(M+m,)[ " u(r)z(r)dr (24)

Thus, the objective function for discretization is defined as:

JE) =" u(k+i-1)Z (k+i)

The objective function is then transformed into a standard
quadratic form, as shown:

J(k)= 37! ()07, (k)

(25)

(26)

By substituting equation (17) into equation (20), the quadratic
expression for J with respect to Au is derived. Terms irrelevant
to the decision variable Au are eliminated, yielding the
objective function as follows:

J(k):%AUTEAU+AUTf,MAU <b 27)

E:HLTQHL f:HLTQGLxL(k)

The Q is constructed using a chunked diagonal construction,
with each submodule g, ; arranged in N cycles on the main
diagonal (i € [1,N]), which is characterized in Ref. The
system constraints are fully described by the linear
inequality MAU < b, where M characterizes the system

parameter matrix and b defines the set of constraint boundaries.

I Au,, 1 G O 0
-1 —Au_ 1 0 v :
L I T I N T ,
D (umax uk—l )1 K O
-D (U 11y )1 0 0 Gy,
000
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The mathematical programming framework of the control
system is solved by leveraging the quadratic programming
solver “quadprog” in MATLAB. Following the receding
horizon mechanism of model predictive control (MPC), solely
the initial actuation command is implemented during
individual control intervals, with successive optimization
cycles executed iteratively across sequential sampling periods.

Linear equivalent
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Fig. 3 Point Absorber WEC Control Block Diagram

3 Simulation Results

This study adopts a linear session-based predictive control
framework to manage the operational dynamics of a
cylindrical point-absorbing wave energy converter. The
numerical validation demonstrates system performance under
specified hydrodynamic conditions: a temporal resolution of
50ms (At= 0.05s), buoy geometric parameters (radius = 0.88
m, submergence depth = 0.53m, inertial mass = 858 kg), and
stochastic wave excitation characterized by a JONSWAP [10]
spectrum (significant wave height Hs=0.15 m, spectral peak
period T, = 3.5s) over a 200-second simulation horizon.
Hydrodynamic parameters were computed via potential flow
simulations using the open-source BEM solver NEMOH, with
full system specifications detailed in the parametric
compilation table.

Table 1. System parameters used in the simulation.

Notation Description Value
p Sea-water density 1000 kg/m3
g Gravitational acceleration 9.8 N/kg
M Floater mass 858 kg
Me Added mass 782 kg
Ky Hydrostatic stiffness 23981 N/m
Fpto Input limit 1200 N
AFp0 Input increment limit 1000 N
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Fig. 4 Velocity and displacement information processed by

EKF

0 20 40 60 80 140 160 180

Fig. 4 demonstrates the effectiveness of the Extended Kalman
Filter in estimating the displacement and velocity of the floater
system. The estimated results closely match the measured data
in both overall trends and transient behavior.
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Fig. 5 Control the input force of WEC under LR-EKF based
MPC.

Fig. 5 shows the control force input under the LR-MPC
framework. The control signal remains smooth over time and
strictly satisfies all predefined constraints.

1500
0.1
{ 1000
0.05 =
500 T
o
v 2
E 0 0 =
5 S
3
500 G
-0.05 2
1-1000
0.1
‘ . . ‘ ‘ . ‘ ‘ ‘ 00
0 20 40 60 80 100 120 140 160 180 200

Time(s)
Fig. 6 Phase relationship between estimated excitation force and
heave velocity

Fig 6 demonstrates the simulation results of the wave
excitation force compared with the float velocity. It is analyzed
that the velocity profile and the excitation force are basically
the same in phase, indicating that the wave energy conversion
system is in a resonant state. Under this condition, the system
reaches the maximum energy capture efficiency, and the
velocity versus time curve remains smooth without significant
fluctuations.
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Fig. 7 Predicted vs measured excitation force under linear
regression modeling

Fig 7 illustrates that the comparison between predicted and
actual incentives indicates that the predicted incentives are
aligned in phase with the actual ones.
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Fig. 8 Energy extracted by the WEC system using the linear
regression-based MPC method
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Fig. 8 shows the energy extracted by the WEC system under
the linear regression-based MPC method, demonstrating that
stable and continuous energy extraction is achieved using this
control strategy.

In model performance assessment, the coefficient of
determination, GOF, as a key quantitative metric, is defined by
the mathematical relationship between the total sum of squared
deviations (TSS) and the residual sum of squares (RSS), which
effectively characterizes the extent to which the predicted data
explains the true observations and is often used as a core
criterion for validating the accuracy of a kinetic model:

RSS z(yi_j}i)z
GOF =1-— =1~ i (28)
Z(yi _y)z
i=1

where y is the measured value of excitation force, y is the
sample mean, and ¥ is the model estimate. According to the
theoretical definition, the GOF indicator is defined in the [0,1]
closed interval, and its value tends to 1 when it reflects a better
fit of the model to the data. In particular, when GOF=1, the
model predicted value y presents a perfect match with the
measured value y.



Table 2. Summary of Results During 200s Simulation

Parameters GOF Average Maximum
computing time (s) computing time (s)
Value  0.8701 0.0017 0.0057

Table 2 shows the statistics of WEC control results using the
linear regression MPC method within a simulation period of
200s. GOF=0.8701 proves that the proposed method based on
linear regression MPC has high accuracy in fitting and
predicting the exciting force during the control process, and the
solution time in the control process proves that using this
method can be calculated within the sampling period out
control input.

4 Conclusion

In this study, we propose a model predictive control method
based on linear regression with extended Kalman filtering,
which replaces the excitation force measurements required for
the control of traditional wave energy devices by obtaining the
transverse rocking angular velocity of the floating body in real
time. Simulation results show that this method achieves
comparable control accuracy to conventional strategies while
reducing hardware cost. By using conventional motion sensors
instead of specialized excitation force measurement devices, it
not only significantly improves the operational reliability of
the system under complex sea conditions, but also drastically
reduces the deployment and maintenance cost of the ocean
energy equipment. This solution has both control performance
and economic advantages, providing a feasible path for the

engineering application of wave energy conversion technology.
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