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Abstract 

Wave energy converters (WECs) face significant challenges in control performance due to system nonlinearity, dynamic 

parameter coupling, and reliance on costly physical sensors. To address these issues, this paper proposes a sensorless control 

strategy that combines an Extended Kalman Filter (EKF)-based excitation force estimation with Model Predictive Control 

(MPC). The EKF estimates excitation forces in real time using measurable buoy motion states—namely, heave velocity and 

displacement—eliminating the need for direct wave force measurements. The estimated forces are then integrated into an MPC 

framework to address parameter coupling among hydrodynamics, power take-off (PTO) damping, and generator load. 

Simulation results demonstrate that the proposed method achieves comparable control accuracy to conventional MPC strategies 

based on known excitation inputs, while significantly reducing system complexity and sensor costs.

1 Introduction 

Under the dual pressures of global climate crisis response and 

energy transition, renewable energy technologies have become 

the core driver for reshaping human energy systems. Wave 

power generation, as a renewable energy source, offers clean 

and sustainable characteristics that effectively reduce 

dependence on fossil fuels. Its development not only mitigates 

global climate change but also promotes optimization and 

transformation of energy structures [1]. Additionally, the 

widespread availability of wave energy resources in coastal 

regions provides new possibilities for local economic 

development and energy self-sufficiency. Wave Energy 

Converters (WECs) are recognized as effective tools for 

capturing ocean wave energy [2]. 

 

However, existing control strategies often exhibit inefficient 

energy conversion and system stability issues under irregular 

wave conditions. In recent years, numerous control 

strategies—such as impedance matching [3]and optimal 

velocity tracking [4]—have been proposed to optimize WEC 

energy conversion. Although these methods perform well in 

specific cases, they rely heavily on accurate modeling and 

degrade significantly under wide wave frequency variations. 

Thus, the adaptability and robustness of current approaches 

remain limited [5]. Model Predictive Control (MPC) has 

attracted growing attention due to its intuitive design 

principles, ability to handle multi-variable systems, and strong 

performance in managing nonlinear constraints. 

 

One of the main problems in MPC applications is the accurate 

prediction of the wave excitation force, which is a key input in 

the dynamic modeling of WEC systems, and which is usually 

unpredictable and varies with the waves [6]. For example, in 

[7] a pressure sensor is used to measure the total wave force 

minus the radiative and viscous forces to obtain an 

approximate excitation force, while in [8] the wave excitation 

force is assumed to be a known quantity. 

 

This paper proposes a linear regression Kalman filter-based 

method for predicting wave excitation forces, aimed at 

enhancing traditional model predictive control by replacing 

the need for real-time measurement and prediction of wave 

excitation forces during MPC operation., with the simple and 

easy-to-measure velocity information. Simulation results show 

that the performance of this method is very close to the 

traditional MPC control method based on known future 

excitation force information. 

 

The mathematical model of the point absorbing wave energy 

converter is developed in Section II. The proposed control 

strategy is appropriately derived in Section III. The results of 

this study are presented in Section IV. Finally, some 

conclusions are drawn in Section V. 

2. Methodology 

2.1 Equation of motion 

The focus of this study is a point-absorbing WEC, shown in 

Fig. 1. It includes three components: A buoyant structure 
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positioned at the sea surface, an energy conversion mechanism 

(PTO), and a stationary base structure. 

 

 
Fig. 1 Schematic diagram of a point absorber wave energy 

converter (WEC) 

 

The WEC extracts energy from the relative heave motion of 

the floating body. The mathematical representation of the 

floating device's motion dynamics is expressed through the 

following relationship: 

( ) ( ) ( ) ( ) ( )exc pto h radMz t F t F t F t F t= + − −              (1) 

Here, 𝑧 represents the vertical displacement of the float near 

its equilibrium position, 𝑀 denotes the float's mass, 𝐹𝑝𝑡𝑜 is the 

power take-off (PTO) force, and 𝐹ℎ , 𝐹𝑟𝑎𝑑  correspond to the 

hydrostatic and radiative forces, respectively, as shown in the 

equation below: 

( ) ( )h hF t K z t=  (2) 

( ) ( ) ( ) ( )
0

t

rad rF t m z t h t z t d = + −              (3) 

where 𝑚∞ refers to the extra mass at an infinite frequency, ℎ𝑟 

is the radiative convolution term, and 𝐾ℎ is the fluid stiffness, 

expressing the convolution term in the radiative force in state 

space: 

( ) ( )

( ) ( ) ( )
0

( )
t

r r

r r r r

k t x t d C x t

x t A x t B z t

  − 


= +

  (4) 

where 𝐴𝑟 , 𝐵𝑟  , 𝐶𝑟  are the correlation matrices, which can be 

calculated by NEMOH [9], and 𝑥𝑟 is the radiative subsystem 

state. 

2.2 Model predictive control 

By integrating equations (1) to (4), the dynamic model of the 

point absorber WEC can be derived as follows: 

( ) ( ) ( )

( ( )) ( ) ( ) ( ) ( )r r s

r r r r

M m x t C x K x t u t w t

x t A x t B z t

+ + − = +


= +
 (5) 

The system can be represented using a linear time-invariant 

state-space model, which is formulated as: 

( )( ) ( ) ( )

( ) ( )

c c c c c

c c c

x t A x t B u t B w t

y t C x t

 = + +


=
                (6) 

Where: ( ) ( )  ( ) ( ) , ( ) ( ) ( )
c

T T

r cx t z t z t x t y t z t z t= =   ,

PTO( ) ( )u t F t= , exc( ) ( )w t F t= . 

For the deployment of the model predictive control (MPC) 

strategy, the continuous-time state-space representation 

requires discretization. The resulting discrete-time formulation 

is mathematically defined as: 

( ) ( ) ( ) ( )

( ) ( )

1 d d d

d

x k A x k B u k B w k

y k C x k

 + = + +


=
            (7) 

where: c sA T

dA e= ,
0

s
c s

T
A T

d cB e d B=  ,
d cC C= ,

sT is the 

sampling time. 

An incremental representation is used in the state vectors and 

the input increments are used as decision variables in the state 

space model, which in turn creates the MPC prediction model. 

The discrete state space expression using the incremental form 

is: 

( ) ( ) ( ) ( )

( ) ( )

1 wx k Ax k B u k B w k

y k Cx k

 + = +  +


=
            (8) 

The current input state  ( ) ( )  ( 1)
T

x k x k u k= −  and output 

states are  ( ) ( )  ( 1)
T

y k y k u k= − . 

Where:
  0

,  ,  ,  
0   1 1 0 0   1

d d d d dA B B B C
A B B C

       
= = = =       
       

. 

At time step k, the prediction model forecasts system outputs 

over a prediction horizon of N steps: 

( ) ( ) ( )ˆ 1 , 2 , ,
T

Y y k y k y k N= + + +               (9) 

Upcoming wave excitation force can be mathematically 

represented as: 

1
ˆ ˆ ˆ ˆ, , ,

T

k k k NW W W W+ +
 =
 

 (10) 

The anticipated control signal variations within the prediction 

horizon are formulated as: 

( ) ( ) ( )ˆ ˆ ˆ ˆ, 1 , ,
T

U U k U k U k N  =   +  +
 

       (11) 

The formula for calculating Ŷ  is: 

( )ˆ ˆ ˆ
d wY Gx k H U H W= +  +  (12) 

2.3Estimation of excitation force 

As outlined by equations (8) and (9), successful deployment of 

model predictive control (MPC) in wave energy conversion 

systems demands real-time access to hydrodynamic excitation 

force forecasts spanning the entire prediction horizon to ensure 

optimal control actions. Existing wave parameter acquisition 

methods usually rely on costly specialized instruments (e.g., 

contact wave height monitors or distributed pressure sensing 

arrays), which make it difficult to directly access the dynamic 

wave loads acting on the device. In addition, the need for real-

time prediction of wave excitation forces further increases the 

system's hardware arithmetic burden in terms of dynamic 

modeling and real-time computation. 

 

Additional control devices not only increase the installation 

costs of Wave Energy Converters (WECs), reducing their 

economic feasibility, but also introduce additional 

uncertainties, thereby compromising the reliability of WECs 

under real ocean conditions. In this context, it becomes 
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essential to replace the excitation force with measurable 

physical quantities. Compared to excitation forces, position 

and velocity sensors offer greater cost-effectiveness, durability, 

and reliability, making them more suitable for large-scale 

applications. However, sensor data is often affected by noise 

and interference, which can impair the accuracy and stability 

of the system. To resolve this limitation, the schematic 

diagram in Fig. 2 illustrates the integration of: we introduce 

the Extended Kalman Filter (EKF) to denoise the raw sensor 

data and enhance the accuracy of the float's velocity and 

position measurements. EKF effectively removes random 

noise from the sensor data, providing more accurate dynamic 

information. Subsequently, a linear regression analysis is 

employed to establish the relationship between the float's 

velocity and the excitation force. This regression model is then 

used to replace the excitation force information required for 

Model Predictive Control (MPC) with the processed velocity 

data, thereby simplifying the system structure and enhancing 

its reliability. 

 
Fig. 2 Flowchart of MPC control for EKF-based excitation 

force estimation 

 

The nonlinear system model for the floating body motion 

under EKF is defined as: 

( )

( )
1 1 1,k k k k

k k k

x f x u w

z h x v

− − −= +

= +
                          (13) 

where 𝑓(∙) and ℎ(∙) denote the state and output (measurement) 

functions, respectively. The vectors  𝑥𝑘−1 , 𝑢𝑘−1 , and 𝑤𝑘−1 

represent the estimated state, input, and process noise at time 

k−1. The measurement function ℎ(∙) maps the estimated state 

vector 𝑥𝑘 , and the measurement noise vector 𝑣𝑘 , while 𝑧𝑘 

refers to the estimated output vector. 

 

Once the EKF processes the velocity and displacement signals, 

these are used to reconstruct the empirical equations to 

determine the wave excitation force, along with the float's rise 

and sinking rates. Linear regression examines the relationship 

between two variables, x and y. It is commonly used to fit an 

empirical straight line to an ideal sample. Suppose that for each 

value of: 

    ( )2,i iY N x  +                                (14) 

Where 𝛼 , 𝛽 , 𝜎2  and are unknown parameters that do not 

depend on. Denoted as: 

( ) ( ), 1, 2, ,i i iY x i n  = − + =                 (15) 

The parameters 𝛼 and 𝛽 are estimated using the least squares 

method, which allows the construction of the empirical 

regression equation for 𝑌 in relation to x. 

 

2.4 Implementation methods 

Based on the modeling of the response relationship between 

pendant velocity and wave excitation force, the floating body 

pendant velocity is set as a predictor variable, and a linear 

regression method is used to construct an empirical 

relationship model between the two. Within the MPC 

framework, a dataset of float heave velocities is collected from 

the point absorber system, and a linear mapping between 

velocity and excitation force is established as: 

( ) ( )excF t b az t= +                              (16) 

where 𝑎 and 𝑏 are regression parameters fitted on the basis of 

measured data. 

 

Combining formulas. (6)(16) yields a linear regression-based 

kinetic model of the point-absorbing wave energy converter, 

which is expressed as: 

( ) ( ) ( ) ( ) ( )

( ) ( )
0

t

r hM m z t h t z t d K z t

u t az t

 + + − + =

+


       (17) 

The updated linear time-invariant state-space model is give

n by: 

( ) ( ) ( )

( ) ( )
L Lc c c

L c c

x t A x t B u t

y t C x t

 = +


=
                      (18) 

Where:

0 1 0

0

h r
Lc

r r

K Ca
A

M m M m M m

B A

  

 
 

− − =
 + + +
 
  

,

0

1

0

cB
M m

 
 
 =
 +
 
 

,
1 0 0

0 1 0
cC

 
=  
 

. 

The updated discrete state-space equation is as follows: 

( ) ( ) ( )

( ) ( )

1L Ld d

L d

x k A x k B u k

y k C x k

 + = +


=
                    (19) 

Where: L sA T

LdA e= ,
0

s
Lc s

T
A T

Ld cB e d B=  ,
Ld cC C= . 

 

Under the MPC paradigm, the dynamical system formulation 

employs the control input variation 𝑢(𝑘) as the optimization 

parameter, governed by the discrete-time state transition 

equation: 

( ) ( ) ( )

( ) ( )

1L L L L L

L L L

x k A x k B u k

y k C x k

 + = + 


=
             (20) 
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At each time step k, the prediction model projects system 

outputs over a future horizon of N steps: 

( ) ( ) ( )ˆ 1 , 2 , ,
T

L L L LY y k y k y k N= + + +              (21) 

Predict the incremental sequence of control quantities in the 

time domain: 

( ) ( ) ( )ˆ ˆ ˆ ˆ, 1 , ,
T

L L L LU U k U k U k N  =   +  +
 

    (22) 

The expression for computing 𝑌̂ is: 

( )ˆ ˆ
L L L L LY G x k H U= +                         (23) 

Where: 

2

T

L L

L L

L

N

L L

G A

G A
G

G A

 
 
 =
 
 
 

,

1

0 0

0

L L

L L L L L

L

N

L L L L L L L L

C B

C A B C B
H

C A B C A B C B−

 
 
 =
 
 
 

. 

2.4 Optimization formulation 

In the predictive control of a wave energy device (WEC), the 

peak energy that can be captured by the system in the time 

domain 𝑇 corresponds to the mechanical energy output of the 

power take-off unit (PTO), which is quantified by the 

expression: 

( ) ( ) ( )
t T

m
t

E M m u z d  
+

= − +                   (24) 

Thus, the objective function for discretization is defined as: 

( ) ( ) ( )
1

1
N

i
J k u k i Z k i

=
= + − +               (25) 

The objective function is then transformed into a standard 

quadratic form, as shown: 

( ) ( ) ( )
1 ˆ ˆ
2

T

L LJ k Y k QY k=                          (26) 

By substituting equation (17) into equation (20), the quadratic 

expression for J with respect to ∆𝑢 is derived. Terms irrelevant 

to the decision variable ∆𝑢  are eliminated, yielding the 

objective function as follows: 

( )
1 ˆ ˆ ˆ ˆ,
2

T TJ k U E U U f M U b=   +            (27) 

T

L LE H QH=      ( )T

L L Lf H QG x k=  

The Q is constructed using a chunked diagonal construction, 

with each submodule 𝑞𝑘+𝑖 arranged in N cycles on the main 

diagonal ( 𝑖 ∈ [1, 𝑁] ), which is characterized in Ref. The 

system constraints are fully described by the linear 

inequality  𝑀∆𝑈̂ ≤ 𝑏 , where M characterizes the system 

parameter matrix and b defines the set of constraint boundaries. 

( )

( )

1max

2max

max 1

max 1

0 01

01
, , ,

01

0 01

0 0 0

0 0 1

0 1 0

p

k

k

k

k Nk

k i

quI

quI
M b Q

u uD

qu uD

q

+

+

−

+−

+

   
    −−    = = =
    −
   

− +−         

 
 

=
 
  

 

The mathematical programming framework of the control 

system is solved by leveraging the quadratic programming 

solver “quadprog” in MATLAB. Following the receding 

horizon mechanism of model predictive control (MPC), solely 

the initial actuation command is implemented during 

individual control intervals, with successive optimization 

cycles executed iteratively across sequential sampling periods. 

 
Fig. 3 Point Absorber WEC Control Block Diagram 

3 Simulation Results 

This study adopts a linear session-based predictive control 

framework to manage the operational dynamics of a 

cylindrical point-absorbing wave energy converter. The 

numerical validation demonstrates system performance under 

specified hydrodynamic conditions: a temporal resolution of 

50ms (∆𝜏= 0.05s), buoy geometric parameters (radius = 0.88 

m, submergence depth = 0.53m, inertial mass = 858 kg), and 

stochastic wave excitation characterized by a JONSWAP [10] 

spectrum (significant wave height Hs=0.15 m, spectral peak 

period 𝑇𝑝 = 3.5 𝑠 ) over a 200-second simulation horizon. 

Hydrodynamic parameters were computed via potential flow 

simulations using the open-source BEM solver NEMOH, with 

full system specifications detailed in the parametric 

compilation table. 

 

Table 1. System parameters used in the simulation. 

 

Notation Description Value 

𝜌 Sea-water density 1000 kg/m3 

g Gravitational acceleration 9.8 N/kg 

M Floater mass 858 kg 

𝑚∞ Added mass 782 kg 

𝐾ℎ Hydrostatic stiffness 23981 N/m 

𝐹𝑝𝑡𝑜 Input limit 1200 N 

∆𝐹𝑝𝑡𝑜 Input increment limit 1000 N 
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Fig. 4 Velocity and displacement information processed by 

EKF  

Fig. 4 demonstrates the effectiveness of the Extended Kalman 

Filter in estimating the displacement and velocity of the floater 

system. The estimated results closely match the measured data 

in both overall trends and transient behavior. 

 

 
Fig. 5 Control the input force of WEC under LR-EKF based 

MPC. 

Fig. 5 shows the control force input under the LR-MPC 

framework. The control signal remains smooth over time and 

strictly satisfies all predefined constraints. 

 
Fig. 6 Phase relationship between estimated excitation force and 

heave velocity 

Fig 6 demonstrates the simulation results of the wave 

excitation force compared with the float velocity. It is analyzed 

that the velocity profile and the excitation force are basically 

the same in phase, indicating that the wave energy conversion 

system is in a resonant state. Under this condition, the system 

reaches the maximum energy capture efficiency, and the 

velocity versus time curve remains smooth without significant 

fluctuations. 

 

 
Fig. 7 Predicted vs measured excitation force under linear 

regression modeling 

Fig 7 illustrates that the comparison between predicted and 

actual incentives indicates that the predicted incentives are 

aligned in phase with the actual ones. 

 
Fig. 8 Energy extracted by the WEC system using the linear 

regression-based MPC method 

Fig. 8 shows the energy extracted by the WEC system under 

the linear regression-based MPC method, demonstrating that 

stable and continuous energy extraction is achieved using this 

control strategy. 

 

In model performance assessment, the coefficient of 

determination, GOF, as a key quantitative metric, is defined by 

the mathematical relationship between the total sum of squared 

deviations (TSS) and the residual sum of squares (RSS), which 

effectively characterizes the extent to which the predicted data 

explains the true observations and is often used as a core 

criterion for validating the accuracy of a kinetic model: 

2

1

2

1

ˆ( )

1 1

( )

n

i i

i

n

i

i

y y
RSS

GOF
TSS

y y

=

=

−

= − = −

−




                    (28) 

where y is the measured value of excitation force, 𝑦 ̅is the 

sample mean, and 𝑦̂ is the model estimate. According to the 

theoretical definition, the GOF indicator is defined in the [0,1] 

closed interval, and its value tends to 1 when it reflects a better 

fit of the model to the data. In particular, when GOF=1, the 

model predicted value 𝑦̂  presents a perfect match with the 

measured value y. 
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Table 2. Summary of Results During 200s Simulation 

 

Parameters GOF Average 

computing time (s) 

Maximum 

computing time (s) 

Value 0.8701 0.0017 0.0057 

 

Table 2 shows the statistics of WEC control results using the 

linear regression MPC method within a simulation period of 

200s. GOF=0.8701 proves that the proposed method based on 

linear regression MPC has high accuracy in fitting and 

predicting the exciting force during the control process, and the 

solution time in the control process proves that using this 

method can be calculated within the sampling period out 

control input. 

4 Conclusion 

In this study, we propose a model predictive control method 

based on linear regression with extended Kalman filtering, 

which replaces the excitation force measurements required for 

the control of traditional wave energy devices by obtaining the 

transverse rocking angular velocity of the floating body in real 

time. Simulation results show that this method achieves 

comparable control accuracy to conventional strategies while 

reducing hardware cost. By using conventional motion sensors 

instead of specialized excitation force measurement devices, it 

not only significantly improves the operational reliability of 

the system under complex sea conditions, but also drastically 

reduces the deployment and maintenance cost of the ocean 

energy equipment. This solution has both control performance 

and economic advantages, providing a feasible path for the 

engineering application of wave energy conversion technology. 
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