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Abstract 

To address the issues of distribution differences caused by complex working conditions in industrial scenarios and the scarcity 

of labeled data, a novel multi-scale attention and improved joint distribution adaptation network (MA-IJDA) is developed for 

rolling bearing fault diagnosis. Firstly, a multi-branch convolutional neural network (MACNN) integrated with a channel 

attention mechanism is constructed as a shared feature extractor. This network sufficiently captures multi-scale transferable 

fault features through differentiated receptive fields and adaptively enhances key information. Secondly, by fusing softmax 

confidence and feature space clustering results, a dual-path pseudo-label generation strategy is developed to boost target domain 

pseudo-labeling reliability. On this basis, an improved joint distribution adaptation (IJDA) mechanism is developed, which 

employs a joint mean–variance discrepancy (JMVD) metric to synchronously align marginal and conditional distributions, 

thereby enhancing inter-class separability and cross-domain discriminative capability in the feature space. Extensive cross-

working condition experiments on CWRU and JNU bearing datasets verify that MA-IJDA achieves superior diagnostic 

performance across varying loads and rotational speeds, confirming its exceptional transferability and generalization in complex 

industrial scenarios. 

1 Introduction 

As industrial machinery evolves towards automation and 

intelligence, rotating machinery operates under complex and 

variable working conditions for extended periods. The 

operating status is frequently affected by load fluctuations, 

speed variations, and environmental noise, causing vibration 

signals to exhibit non-stationary, multi-scale, and highly 

nonlinear characteristics, which pose significant challenges for 

fault diagnosis [1]. In recent years, with the rapid application 

of deep learning in industrial fault diagnosis, convolutional 

neural networks (CNNs), owing to their end-to-end automatic 

feature learning capability, have gradually replaced traditional 

shallow models and become a mainstream approach in 

intelligent bearing fault diagnosis [2]. Nevertheless, due to the 

complex and dynamic working environments in industrial sites, 

the distribution of vibration signals fluctuates over time [3]. 

Traditional deep models, built on static operating condition 

data, lack cross-working condition generalization capability, 

resulting in markedly inadequate adaptability when operating 

conditions change. 

 

To resolve this, domain adaptation (DA) methods have been 

extensively utilized to cross-domain intelligent fault diagnosis 

tasks, aiming to minimize distribution discrepancies inter-

domain and enhance transfer performance. Representative 

works include the domain adversarial neural network (DANN) 

proposed by Ganin et al. [4], which realizes domain-invariant 

feature learning through adversarial training between a feature 

extractor and a domain discriminator. Long et al. [5] 

introduced a multi-kernel maximum mean discrepancy (MK-

MMD) approach to align the mean embeddings of the source 

and target domains, achieving global distribution alignment. 

Song et al. [6] introduced a multi-scale subdomain adaptation 

model that partitions the source and target domains into 

corresponding subdomains by fault type and employs the local 

maximum mean discrepancy (LMMD) based on predicted 

labels to align their conditional distributions. Most of these 

methods prioritize marginal distribution alignment but 

overlook conditional distribution disparities. This oversight 

can cause subdomain misalignment when identical fault 

features exhibit asymmetric shifts across working conditions. 

Moreover， target domain pseudo-labels are inevitably prone 

to noise interference. which can mislead conditional 

distribution alignment and induce negative transfer., limiting 

model adaptability in complex cross-working condition 

scenarios. 

 

In addressing these challenges, This study presents a multi-

scale attention and improved joint distribution adaptation 

(MA-IJDA) method for rolling bearing fault diagnosis. A 

multi-branch convolutional feature extractor with channel 

attention is constructed for adaptive extraction of multi-scale 

fault features, and a dual-path pseudo-label strategy is 

designed to enhance target domain labeling reliability. For 

distribution alignment, a joint mean–variance discrepancy 

(JMVD) metric is employed to concurrently synchronize the 

global (marginal) and fine-grained (conditional) distributions. 
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Extensive transfer experiments on CWRU and JNU bearing 

datasets validate the proposed method's superior diagnostic 

precision and adaptability in complex cross-working condition 

scenarios. 

 

2. Theoretical Background 

2.1 Problem definition of domain adaptation 

A domain D  comprises of a feature space  and its 

corresponding marginal probability distribution ( )P X , where 

 ,...i nX x x=   represents the input sample set. 

Specifically, the source domain is defined as  
1

,
sn

s s

s i i i
D x y

=
= , 

which contains sn  labeled samples, drawn from the 

distribution ( )sP X .The target domain is referred to 

 
1

tn
t

t j j
D x

=
= , which contains tn  unlabeled target domain 

samples following the distribution ( )tP X . A task  consists 

of a label space  1,2,...,s C=  and a conditional probability 

distribution ( | )P y x , where C  is the number of fault 

categories,  iy=  is the set of labels, and s t= . 

 

DA methods aim to learn a classifier :f x y→  based on 

labeled source domain data sD  to predict the labels of target 

domain data tD , while minimizing the expected risk on the 

target domain. To achieve this, it is essential to address both 

marginal distribution shift ( ) ( )s tP X P Y  and conditional 

distribution shifts ( | ) ( | )s tP Y X P Y X . 

2.2 Distribution distance measurement 

Mechanical fault diagnosis faces challenges from vibration 

signals' high variance and non-stationary nature. a single 

statistical measure (such as the mean or variance) is 

insufficient to comprehensively characterize the distribution 

discrepancy across domains. To address this issue, a Joint 

Mean-Variance Discrepancy (JMVD) metric is proposed in 

this study, which integrates the Maximum Mean Statistic 

Discrepancy (MMSD) [7] and the Variance Discrepancy 

Representation (VDR) [8] to jointly optimize multi-order 

statistical distributions: 
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Where sE  and tE  represent the expectations over the 

domains, respectively, ( , )k    denotes the Gaussian kernel 

function,   
2

( , ) ( , ) ( ,x k x E k x


 =  −   represents the mean-

removed kernel tensor product, directly reflects the variance 

information of the data in the RKHS. The symbol   denotes the 

tensor product operation. 

 

3. Multi-scale Attention and Improved Joint 

Distribution Adaptation Network 

The proposed fault diagnosis model MA-IJDA comprises 

three core modules: a multi-scale feature extraction module, a 

label generation module, and an improved joint distribution 

adaptation (IJDA) module. The overall framework is 

illustrated in Fig. 1. Firstly, parallel multi-scale convolutional 

layers are employed to extract multi-dimensional fault features 

under different receptive fields, and a channel attention 

mechanism is incorporated to dynamically amplifying of 

critical features. Secondly, a dual-path pseudo-label 

generation strategy is designed to predict pseudo-labels to 

target domain samples from both probability confidence and 

feature space distribution perspectives, effectively improving 

the reliability of target domain annotations. In addition, the 

IJDA mechanism, combined with the JMVD metric, is adopted 

to jointly align the marginal and conditional distributions over 

the two domains, thereby improving performance across 

domains and inter-class discriminability.

 
Fig. 1 The network structure of MA-IJDA
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3.1 Shared feature extraction network 

Rolling bearings typically operate under non-stationary 

conditions, where the fault features exhibit multi-scale and 

time-varying complexity. To tackle the inadequate feature 

extraction ability of traditional CNNs for these signals, An 

attention mechanism-based multi-scale CNN (MACNN) is 

designed as the shared feature extraction module., as 

illustrated in Fig. 2. 

 

 
 

Fig. 2 Architecture of MACNN 

 

Initially, the raw time-series fault signals are fed into a wide 

convolutional layer to extract global trend features. (adopting 

the method in [9] to enlarge the receptive field for noise 

suppression), followed by batch normalization and ReLU 

activation, and subsequently down sampled via max pooling. 

On this basis, the multi-scale feature extraction employs 

parallel convolutional branches with kernel sizes of 5 1 , 

7 1 , and 9 1  to capture fault patterns across different 

frequency bands and time scales. Subsequently, a squeeze-

and-excitation (SENet) channel attention mechanism is 

introduced, which generates channel-wise statistics through 

global average pooling, and the resulting statistics are then 

passed through two fully connected layers and activated by a 

Sigmoid function to adaptively recalibrate the weights of 

feature channels. Finally, adaptive pooling is applied to unify 

the feature dimensions for subsequent joint domain adaptation 

and classification modules. 

3.2 Dual path pseudo-labeling strategy 

Existing joint distribution alignment methods typically rely on 

class labels to estimate conditional distribution discrepancies. 

However, in transfer learning, target domain labels are 

unavailable during training and must therefore be annotated 

with pseudo-labels. Most existing methods use softmax 

classifier outputs for this, but early in training, decision 

boundaries are unclear, leading to inaccurate pseudo-labels 

that can misguide distribution alignment and cause prototype 

shift. To address this, we propose a dual-path pseudo-labeling 

strategy that integrates softmax prediction with structured 

prediction, enhancing the accuracy and robustness of pseudo-

labels by jointly considering prediction confidence and spatial 

distribution. 

 

First, based on the trained classifier, The probability of a target 

domain sample tx  being classified into class y  is obtained 

through Softmax： 
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Where y  denotes the weight parameter corresponding to 

class y , and ( )tf x  represents the feature vector of sample tx . 

 

A structured prediction method is then applied to refine 

pseudo-labels by exploiting pairwise similarities within the 

target domain. Initially, temporary cluster centers for each 

class are estimated based on the pseudo-labels. These centers 

serve as initial points for a K-Means clustering process, which 

iteratively updates the class prototypes to better capture the 

underlying feature distribution. The updated class probabilities 

are computed as follows: 
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Where 
y

Tf  represents the cluster center of class y  in the 

target domain feature space. 

 

To enhance pseudo-label robustness, the final label for each 

target sample is assigned based on the class with the highest 

probability between the two predictions: 

 ˆ arg max ( | )t y ty p y x=  (4) 

3.3 Improved joint distribution adaptation 

Most current fault diagnosis approaches based on transfer 

learning align the global distribution between the source and 

target domains at the classification layer using discrepancy 

metrics, while ignoring the alignment of conditional 

distributions across classes. This omission may lead to 

misclassification of samples near the decision boundary. In 

response to this， an improved joint distribution alignment 

(IJDA) mechanism is developed to mitigate the discrepancy in 

feature distributions between domains while promoting better 

classification performance. The proposed mechanism consists 

of two components: marginal distribution alignment (CDA) 

and conditional distribution alignment (MDA), where a joint 

metric, JMVD, is defined as the alignment criterion to 

simultaneously optimize both marginal and conditional 

distributions. 

 

Specifically, the marginal distribution alignment loss is 

defined as: 

 ( ) ( )( ), tMDA sL JMV xD f f x=  (5) 

Where JMVD is calculated according to Equation (5). To 

further align the inter-domain conditional statistics for each 

class c, the CDA loss is formulated as: 
2
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Where the target domain statistics ( )tP y c=  are estimated 

based on the proposed dual-path pseudo-labeling strategy. 

 

Finally, the overall loss function of the IJDA is expressed as: 

 

( )

( )
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( ), ( )

( ) ( , ( ) (

s t

s t
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C

s t

c

L JMVD f x f x
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=

+ = =
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3.4 Loss function 

To achieve collaborative optimization of domain alignment 

and classifier discriminability, the objective is to minimize 

both the joint distribution alignment loss and the classification 

loss. Typically, cross-entropy loss is applied to labeled source 

domain samples. To enhance the separability of feature 

representations, target domain samples with pseudo-labels are 

additionally incorporated into the classification loss, which is 

defined as follows: 

 
1 1

1 1
log ( | ) log ( | )

C C
c c c c

s ss t t

c

t

c

W

ts

L y p y x y p y x
n n= =

= − −   (8) 

Finally, the overall loss function is defined as: 

 W IJDall AL LL = +  (9) 

Where   is a trade-off hyperparameter. 

 

4. Experimental Validation 

4.1 Description of the CWRU bearing dataset 

To assess the proposed method's efficacy, experimental studies 

are conducted based on the Case Western Reserve University 

(CWRU) bearing dataset. The bearing type used is SKF6205, 

and the vibration acceleration signals are collected from the 

drive end at a sampling frequency of 12 kHz. The dataset 

covers four typical load conditions (0HP, 1HP, 2HP, and 3HP), 

each containing 10 operating states, including one normal state 

and nine fault states formed by combining three fault types 

(inner race, outer race, and ball faults) with three damage sizes 

(0.18 mm, 0.36 mm, and 0.53 mm). The detailed data 

distribution is presented in Table 1. 

 

Table 1. Detailed information of CWRU dataset 

 

Name 
Working 

conditions 
Fault size(mm) Healthy 

A 0HP 1797rpm 0.18/0.36/0.53 NF/IF/OF/BF 

B 1HP 1772rpm 0.18/0.36/0.53 NF/IF/OF/BF 

C 2HP 1750rpm 0.18/0.36/0.53 NF/IF/OF/BF 

D 3HP 1730rpm 0.18/0.36/0.53 NF/IF/OF/BF 

4.2 Results of CWRU cross-condition experiments 

To evaluate the performance of the proposed MS-IJDA 

method for cross-condition rolling bearing fault diagnosis, 

comparative experiments were conducted against DDC[10], 

DANN[4], and the backbone network MACNN. The raw time-

domain signals were partitioned into segments via a sliding 

window of length 1024, overlap-ping by 50%, yielding 200 

samples for each health state. The networks were trained using 

the Adam optimizer with an initial learning rate of 0.001 and 

a batch size of 128. The cross-condition transfer diagnosis 

accuracies of four models are shown in Table 2. 

 

Table 2. Experimental results based on CWRU (%) 

 

Task 
MACNN 

(base) 
DDC DANN 

MS-

IJDA 

A→B 90.62 95.54 96.58 99.14 

A→C 87.47 97.28 96.43 99.92 

A→D 80.31 91.96 92.50 99.50 

B→A 84.35 98.72 98.32 98.72 

B→C 94.57 99.20 99.52 99.85 

B→D 92.81 96.14 97.63 99.90 

C→A 89.38 95.57 94.67 99.47 

C→B 87.97 97.65 97.62 99.95 

C→D 90.91 98.28 98.60 99.83 

D→A 78.40 87.54 88.17 98.92 

D→B 78.95 88.50 93.92 98.98 

D→C 81.79 96.70 97.19 99.82 

Average 86.46 95.26 95.93 99.50 

 

Results indicate that, the proposed MS-IJDA model achieved 

the optimal average diagnostic accuracy of 99.50% across the 

12 transfer tasks. By simultaneously aligning both marginal 

and conditional distributions between domains, MS-IJDA 

effectively reduced the domain discrepancy at both the global 

and class levels, significantly enhancing cross-condition 

adaptation performance. The backbone network MACNN 

achieved an average accuracy of only 86.46%, indicating that 

relying solely on deep feature extraction without domain 

adaptation cannot ensure stable and accurate fault diagnosis 

under significant distribution shifts. DDC, which constrains 

the marginal distribution via MMD, improved the average 

accuracy to 95.26%; however, the lack of conditional 

distribution alignment led to confusion between classes with 

similar features. DANN, through adversarial training, aligns 

the marginal distribution but depends entirely on the domain 

discriminator, failing to lever-age class-structure information, 

and it is prone to negative transfer. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 3 t-SNE visualization of CWRU dataset (Task B→C). 

(a) MACNN, (b) DDC, (c) DANN, (d) MS-IJDA 
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To further intuitively showcase the strengths of MS-IJDA 

model in cross-domain feature alignment and class 

discrimination, t-distributed Stochastic Neighbor Embedding 

(t-SNE) was employed to reduce the dimensionality of the 

outputs from of the feature extractor. Taking the B→C transfer 

task as an example, Fig. 3 illustrates the two-dimensional 

visualization results of MACNN, DDC, DANN, and MS-IJDA. 

MS-IJDA generates more compact and well-separated clusters 

for samples of the same class, with the least mixing between 

source and target samples of the same class and the clearest 

inter-class boundaries. This confirms its superior performance 

in joint distribution alignment and classification 

discrimination. 

4.3 Fan bearing experimental verification 

To further validate the effectiveness of the proposed method, 

experiments were conducted on a centrifugal fan bearing fault 

test platform developed by Jiangnan University (JNU). 

Bearing vibration signals were sampled at 50 kHz to construct 

a dataset under three rotational speeds: 600 rpm, 800 rpm, and 

1000 rpm, includes four fault types: normal, inner race fault, 

outer race fault, and ball fault. Different combi-nations of 

rotational speeds were designed as distinct transfer tasks. The 

detailed data distribution is presented in Table 3. 

 

Table 3. Detailed information of JNU dataset 

 

Name Speed Healthy 

E 600rpm NF/IF/OF/BF 

F 800rpm NF/IF/OF/BF 

G 10000rpm NF/IF/OF/BF 

 

The same four comparison methods as in the previous 

subsection were employed, and six cross-condition transfer 

scenarios were designed according to the three rotational 

speeds. The diagnostic performance of various methods 

applied to the fan bearing dataset is shown in Table 4 and Fig. 

4. 

 

Table 4. Experimental results based on JNU (%) 

 

Task 
MACNN 
(base) 

DDC DANN MS-IJDA 

E→F 90.31 95.62 97.16 99.42 
E→G 87.56 93.25 94.87 99.31 
F→E 81.38 90.06 92.64 97.37 
F→G 89.06 95.31 98.59 99.62 
G→E 84.58 94.68 91.30 96.34 
G→F 87.40 97.87 96.85 99.65 
Average 86.72 94.15 95.24 98.62 

 

As indicated, the performance of MACNN is notably inferior 

to that of domain adaptation-based approaches in terms of 

diagnostic accuracy, demonstrating the necessity of domain 

adaptation for cross-condition fault diagnosis. Both DDC and 

DANN only align the marginal distributions without 

considering intra-class distance, which is prone to 

misclassification of samples adjacent to the decision boundary. 

In contrast, the proposed method effectively reduces the 

probability of misclassification near decision boundaries by 

jointly aligning marginal and conditional distributions. It 

achieves an average diagnostic accuracy of 98.62%, further 

confirming its strong adaptability and robustness under 

complex working conditions. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 4 t-SNE visualization of JNU dataset (Task E→G).  

(a) MACNN, (b) DDC, (c) DANN, (d) MS-IJDA 

 

4 Conclusion 

In response to the challenges of feature distribution 

inconsistency and the lack of labels in the target domain for 

cross-condition bearing fault diagnosis, this paper presents a 

novel diagnostic framework, MA-IJDA, which integrates a 

Multi-Scale Attention Convolutional Neural Network 

(MACNN) with an Improved Joint Distribution Adaptation 

(IJDA) mechanism. The MACNN employs parallel multi-

scale convolutional branches and a channel attention module 

to effectively integrate fault features at different time-

frequency scales, generating robust and highly discriminative 

feature representations. To handle the unlabeled target domain 

samples, a dual pseudo-labeling strategy combining softmax 

prediction and structured clustering prediction is designed to 

enhance pseudo-label quality. The IJDA mechanism, which 

uses the Joint Mean and Variance Distance (JMVD) as the 

distribution distance metric, further improves the intra-class 

compactness and inter-class separability of the feature space. 

Our proposed method demonstrates superior performance and 

robust-ness in cross-domain fault diagnosis scenarios, as 

evidenced by extensive experiments on two publicly available 

bearing datasets. 
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