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Abstract

To address the issues of distribution differences caused by complex working conditions in industrial scenarios and the scarcity
of labeled data, a novel multi-scale attention and improved joint distribution adaptation network (MA-IJDA) is developed for
rolling bearing fault diagnosis. Firstly, a multi-branch convolutional neural network (MACNN) integrated with a channel
attention mechanism is constructed as a shared feature extractor. This network sufficiently captures multi-scale transferable
fault features through differentiated receptive fields and adaptively enhances key information. Secondly, by fusing softmax
confidence and feature space clustering results, a dual-path pseudo-label generation strategy is developed to boost target domain
pseudo-labeling reliability. On this basis, an improved joint distribution adaptation (IJDA) mechanism is developed, which
employs a joint mean—variance discrepancy (JMVD) metric to synchronously align marginal and conditional distributions,
thereby enhancing inter-class separability and cross-domain discriminative capability in the feature space. Extensive cross-
working condition experiments on CWRU and JNU bearing datasets verify that MA-IJDA achieves superior diagnostic
performance across varying loads and rotational speeds, confirming its exceptional transferability and generalization in complex

industrial scenarios.

1 Introduction

As industrial machinery evolves towards automation and
intelligence, rotating machinery operates under complex and
variable working conditions for extended periods. The
operating status is frequently affected by load fluctuations,
speed variations, and environmental noise, causing vibration
signals to exhibit non-stationary, multi-scale, and highly
nonlinear characteristics, which pose significant challenges for
fault diagnosis [1]. In recent years, with the rapid application
of deep learning in industrial fault diagnosis, convolutional
neural networks (CNNs), owing to their end-to-end automatic
feature learning capability, have gradually replaced traditional
shallow models and become a mainstream approach in
intelligent bearing fault diagnosis [2]. Nevertheless, due to the
complex and dynamic working environments in industrial sites,
the distribution of vibration signals fluctuates over time [3].
Traditional deep models, built on static operating condition
data, lack cross-working condition generalization capability,
resulting in markedly inadequate adaptability when operating
conditions change.

To resolve this, domain adaptation (DA) methods have been
extensively utilized to cross-domain intelligent fault diagnosis
tasks, aiming to minimize distribution discrepancies inter-
domain and enhance transfer performance. Representative
works include the domain adversarial neural network (DANN)
proposed by Ganin et al. [4], which realizes domain-invariant
feature learning through adversarial training between a feature

extractor and a domain discriminator. Long et al. [5]
introduced a multi-kernel maximum mean discrepancy (MK-
MMD) approach to align the mean embeddings of the source
and target domains, achieving global distribution alignment.
Song et al. [6] introduced a multi-scale subdomain adaptation
model that partitions the source and target domains into
corresponding subdomains by fault type and employs the local
maximum mean discrepancy (LMMD) based on predicted
labels to align their conditional distributions. Most of these
methods prioritize marginal distribution alignment but
overlook conditional distribution disparities. This oversight
can cause subdomain misalignment when identical fault
features exhibit asymmetric shifts across working conditions.
Moreover, target domain pseudo-labels are inevitably prone
to noise interference. which can mislead conditional
distribution alignment and induce negative transfer., limiting
model adaptability in complex cross-working condition
scenarios.

In addressing these challenges, This study presents a multi-
scale attention and improved joint distribution adaptation
(MA-IJDA) method for rolling bearing fault diagnosis. A
multi-branch convolutional feature extractor with channel
attention is constructed for adaptive extraction of multi-scale
fault features, and a dual-path pseudo-label strategy is
designed to enhance target domain labeling reliability. For
distribution alignment, a joint mean—variance discrepancy
(JMVD) metric is employed to concurrently synchronize the
global (marginal) and fine-grained (conditional) distributions.



Extensive transfer experiments on CWRU and JNU bearing
datasets validate the proposed method's superior diagnostic
precision and adaptability in complex cross-working condition
scenarios.

2. Theoretical Background

2.1 Problem definition of domain adaptation
A domain D comprises of a feature space X and its
corresponding marginal probability distribution P(.X), where

X ={x,.x,} € X represents the input sample set.
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DA methods aim to learn a classifier f:x — y based on
labeled source domain data D, to predict the labels of target
domain data D,, while minimizing the expected risk on the

target domain. To achieve this, it is essential to address both
marginal distribution shift P (X)=# P(Y) and conditional

distribution shifts P (Y | X)=P(Y | X).

2.2 Distribution distance measurement

Mechanical fault diagnosis faces challenges from vibration
signals' high variance and non-stationary nature. a single
statistical measure (such as the mean or variance) is
insufficient to comprehensively characterize the distribution
discrepancy across domains. To address this issue, a Joint

Mean-Variance Discrepancy (JMVD) metric is proposed in
this study, which integrates the Maximum Mean Statistic
Discrepancy (MMSD) [7] and the Variance Discrepancy
Representation (VDR) [8] to jointly optimize multi-order
statistical distributions:

JMVD*[D,,D,]= MMSD*[D,,D,]1+VDR’[D,,D,]
=|E, lh(x,.)) ® k(x, ) -E [k(x,.) ®k(x,. )}, (1)
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Where E, and E, represent the expectations over the

domains, respectively, k() denotes the Gaussian kernel
function, 7(x,) = {k(x,) — E[k(x,-]}"

removed kernel tensor product, directly reflects the variance
information of the data in the RKHS. The symbol denotes the
tensor product operation.

represents the mean-

3. Multi-scale Attention and Improved Joint
Distribution Adaptation Network

The proposed fault diagnosis model MA-IJDA comprises
three core modules: a multi-scale feature extraction module, a
label generation module, and an improved joint distribution
adaptation (IJDA) module. The overall framework is
illustrated in Fig. 1. Firstly, parallel multi-scale convolutional
layers are employed to extract multi-dimensional fault features
under different receptive fields, and a channel attention
mechanism is incorporated to dynamically amplifying of
critical features. Secondly, a dual-path pseudo-label
generation strategy is designed to predict pseudo-labels to
target domain samples from both probability confidence and
feature space distribution perspectives, effectively improving
the reliability of target domain annotations. In addition, the
IJDA mechanism, combined with the JMVD metric, is adopted
to jointly align the marginal and conditional distributions over
the two domains, thereby improving performance across
domains and inter-class discriminability.
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3.1 Shared feature extraction network

Rolling bearings typically operate under non-stationary
conditions, where the fault features exhibit multi-scale and
time-varying complexity. To tackle the inadequate feature
extraction ability of traditional CNNs for these signals, An
attention mechanism-based multi-scale CNN (MACNN) is
designed as the shared feature extraction module., as
illustrated in Fig. 2.
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Fig. 2 Architecture of MACNN

Initially, the raw time-series fault signals are fed into a wide
convolutional layer to extract global trend features. (adopting
the method in [9] to enlarge the receptive field for noise
suppression), followed by batch normalization and ReLU
activation, and subsequently down sampled via max pooling.

On this basis, the multi-scale feature extraction employs
parallel convolutional branches with kernel sizes of 5x1,
7x1, and 9x1 to capture fault patterns across different
frequency bands and time scales. Subsequently, a squeeze-
and-excitation (SENet) channel attention mechanism is
introduced, which generates channel-wise statistics through
global average pooling, and the resulting statistics are then
passed through two fully connected layers and activated by a
Sigmoid function to adaptively recalibrate the weights of
feature channels. Finally, adaptive pooling is applied to unify
the feature dimensions for subsequent joint domain adaptation
and classification modules.

3.2 Dual path pseudo-labeling strategy

Existing joint distribution alignment methods typically rely on
class labels to estimate conditional distribution discrepancies.
However, in transfer learning, target domain labels are
unavailable during training and must therefore be annotated
with pseudo-labels. Most existing methods use softmax
classifier outputs for this, but early in training, decision
boundaries are unclear, leading to inaccurate pseudo-labels
that can misguide distribution alignment and cause prototype
shift. To address this, we propose a dual-path pseudo-labeling
strategy that integrates softmax prediction with structured
prediction, enhancing the accuracy and robustness of pseudo-
labels by jointly considering prediction confidence and spatial
distribution.

First, based on the trained classifier, The probability of a target
domain sample x, being classified into class y is obtained

through Softmax:
exp(6, f(x,))
plx)=e—"—
Zexp(ﬁkr.f (x,))
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Where 6, denotes the weight parameter corresponding to

class y,and f(x,) represents the feature vector of sample x, .

A structured prediction method is then applied to refine
pseudo-labels by exploiting pairwise similarities within the
target domain. Initially, temporary cluster centers for each
class are estimated based on the pseudo-labels. These centers
serve as initial points for a K-Means clustering process, which
iteratively updates the class prototypes to better capture the
underlying feature distribution. The updated class probabilities
are computed as follows:

exp(-l £(x)— £l
Zexp<—|\f<x,>—f;‘\|>

p,(ylx)= 3)

Where fry represents the cluster center of class y in the
target domain feature space.

To enhance pseudo-label robustness, the final label for each
target sample is assigned based on the class with the highest
probability between the two predictions:

y, =argmax  p(y|x,) “4)

3.3 Improved joint distribution adaptation

Most current fault diagnosis approaches based on transfer
learning align the global distribution between the source and
target domains at the classification layer using discrepancy
metrics, while ignoring the alignment of conditional
distributions across classes. This omission may lead to
misclassification of samples near the decision boundary. In
response to this, an improved joint distribution alignment
(IJDA) mechanism is developed to mitigate the discrepancy in
feature distributions between domains while promoting better
classification performance. The proposed mechanism consists
of two components: marginal distribution alignment (CDA)
and conditional distribution alignment (MDA), where a joint
metric, JMVD, is defined as the alignment criterion to
simultaneously optimize both marginal and conditional
distributions.

Specifically, the marginal distribution alignment loss is
defined as:

Lypy =IMVD(f (x,),/(x,)) (5)

Where JMVD is calculated according to Equation (5). To
further align the inter-domain conditional statistics for each
class ¢, the CDA loss is formulated as:

;
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Where the target domain statistics P(y, =c) are estimated
based on the proposed dual-path pseudo-labeling strategy.

Finally, the overall loss function of the IJDA is expressed as:
Lips = JMVD(f(xs ), f(x;))

+> IMVD(P(y, =) f(x,), P(3, = ) [ (x,))

c=1

™)

3.4 Loss function

To achieve collaborative optimization of domain alignment
and classifier discriminability, the objective is to minimize
both the joint distribution alignment loss and the classification
loss. Typically, cross-entropy loss is applied to labeled source
domain samples. To enhance the separability of feature
representations, target domain samples with pseudo-labels are
additionally incorporated into the classification loss, which is
defined as follows:

18, 1xy- L3 ‘
L, === ylog p(y; |x,) == ¥ log p(y |x,) (8)

s c=1 t c=1

Finally, the overall loss function is defined as:
Ly =Ly + ALy, ©)

Where A is a trade-off hyperparameter.

4. Experimental Validation

4.1 Description of the CWRU bearing dataset

To assess the proposed method's efficacy, experimental studies
are conducted based on the Case Western Reserve University
(CWRU) bearing dataset. The bearing type used is SKF6205,
and the vibration acceleration signals are collected from the
drive end at a sampling frequency of 12 kHz. The dataset
covers four typical load conditions (OHP, 1HP, 2HP, and 3HP),
each containing 10 operating states, including one normal state
and nine fault states formed by combining three fault types
(inner race, outer race, and ball faults) with three damage sizes
(0.18 mm, 0.36 mm, and 0.53 mm). The detailed data
distribution is presented in Table 1.

Table 1. Detailed information of CWRU dataset

a batch size of 128. The cross-condition transfer diagnosis
accuracies of four models are shown in Table 2.

Table 2. Experimental results based on CWRU (%)

MACNN MS-

Task (base) DDC DANN LUDA
A—B 90.62 95.54 96.58 99.14
A—C 87.47 97.28 96.43 99.92
A—D 80.31 91.96 92.50 99.50
B—A 84.35 98.72 98.32 98.72
B—C 94.57 99.20 99.52 99.85
B—D 92.81 96.14 97.63 99.90
C—oA 89.38 95.57 94.67 99.47
C—B 87.97 97.65 97.62 99.95
C—-D 90.91 98.28 98.60 99.83
D—A 78.40 87.54 88.17 98.92
D—B 78.95 88.50 93.92 98.98
D—C 81.79 96.70 97.19 99.82
Average 86.46 95.26 95.93 99.50

Name c\(Zl(ZIril:il(r)lr%s Fault size(mm) Healthy
A OHP 1797rpm  0.18/0.36/0.53  NF/IF/OF/BF
B IHP 1772rpm  0.18/0.36/0.53  NF/IF/OF/BF
C 2HP 1750rpm  0.18/0.36/0.53  NF/IF/OF/BF
D 3HP 1730rpm  0.18/0.36/0.53  NF/IF/OF/BF

4.2 Results of CWRU cross-condition experiments

To evaluate the performance of the proposed MS-IJDA
method for cross-condition rolling bearing fault diagnosis,
comparative experiments were conducted against DDC[10],
DANN[4], and the backbone network MACNN. The raw time-
domain signals were partitioned into segments via a sliding
window of length 1024, overlap-ping by 50%, yielding 200
samples for each health state. The networks were trained using
the Adam optimizer with an initial learning rate of 0.001 and

Results indicate that, the proposed MS-IJDA model achieved
the optimal average diagnostic accuracy of 99.50% across the
12 transfer tasks. By simultaneously aligning both marginal
and conditional distributions between domains, MS-IJDA
effectively reduced the domain discrepancy at both the global
and class levels, significantly enhancing cross-condition
adaptation performance. The backbone network MACNN
achieved an average accuracy of only 86.46%, indicating that
relying solely on deep feature extraction without domain
adaptation cannot ensure stable and accurate fault diagnosis
under significant distribution shifts. DDC, which constrains
the marginal distribution via MMD, improved the average
accuracy to 95.26%; however, the lack of conditional
distribution alignment led to confusion between classes with
similar features. DANN, through adversarial training, aligns
the marginal distribution but depends entirely on the domain
discriminator, failing to lever-age class-structure information,
and it is prone to negative transfer.
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Fig. 3 t-SNE visualization of CWRU dataset (Task B—C).
(a) MACNN, (b) DDC, (c) DANN, (d) MS-IJDA



To further intuitively showcase the strengths of MS-IJDA
model in cross-domain feature alignment and class
discrimination, t-distributed Stochastic Neighbor Embedding
(t-SNE) was employed to reduce the dimensionality of the
outputs from of the feature extractor. Taking the B—C transfer
task as an example, Fig. 3 illustrates the two-dimensional

visualization results of MACNN, DDC, DANN, and MS-1JDA.

MS-IJDA generates more compact and well-separated clusters
for samples of the same class, with the least mixing between
source and target samples of the same class and the clearest
inter-class boundaries. This confirms its superior performance
in joint distribution alignment and classification
discrimination.

4.3 Fan bearing experimental verification

To further validate the effectiveness of the proposed method,
experiments were conducted on a centrifugal fan bearing fault
test platform developed by Jiangnan University (JNU).
Bearing vibration signals were sampled at 50 kHz to construct
a dataset under three rotational speeds: 600 rpm, 800 rpm, and
1000 rpm, includes four fault types: normal, inner race fault,
outer race fault, and ball fault. Different combi-nations of
rotational speeds were designed as distinct transfer tasks. The
detailed data distribution is presented in Table 3.

Table 3. Detailed information of JNU dataset

Name Speed Healthy
E 600rpm NF/IF/OF/BF
F 800rpm NF/IF/OF/BF
G 10000rpm NF/IF/OF/BF

The same four comparison methods as in the previous
subsection were employed, and six cross-condition transfer
scenarios were designed according to the three rotational
speeds. The diagnostic performance of various methods
applied to the fan bearing dataset is shown in Table 4 and Fig.
4.

Table 4. Experimental results based on JNU (%)

Task MACNN DDC DANN MS-1JDA
(base)
E->F 90.31 95.62 97.16 99.42
E->G 87.56 93.25 94.87 99.31
F>E 81.38 90.06 92.64 97.37
F>G 89.06 95.31 98.59 99.62
G-E 84.58 94.68 91.30 96.34
G-F 87.40 97.87 96.85 99.65
Average 86.72 94.15 95.24 98.62

As indicated, the performance of MACNN is notably inferior
to that of domain adaptation-based approaches in terms of
diagnostic accuracy, demonstrating the necessity of domain
adaptation for cross-condition fault diagnosis. Both DDC and
DANN only align the marginal distributions without
considering intra-class distance, which is prone to
misclassification of samples adjacent to the decision boundary.
In contrast, the proposed method effectively reduces the
probability of misclassification near decision boundaries by

jointly aligning marginal and conditional distributions. It
achieves an average diagnostic accuracy of 98.62%, further
confirming its strong adaptability and robustness under
complex working conditions.

(d)

©

Fig. 4 t-SNE visualization of JNU dataset (Task E—~G).
(a) MACNN, (b) DDC, (c) DANN, (d) MS-1JDA

4 Conclusion

In response to the challenges of feature distribution
inconsistency and the lack of labels in the target domain for
cross-condition bearing fault diagnosis, this paper presents a
novel diagnostic framework, MA-IJDA, which integrates a
Multi-Scale  Attention Convolutional Neural Network
(MACNN) with an Improved Joint Distribution Adaptation
(IJDA) mechanism. The MACNN employs parallel multi-
scale convolutional branches and a channel attention module
to effectively integrate fault features at different time-
frequency scales, generating robust and highly discriminative
feature representations. To handle the unlabeled target domain
samples, a dual pseudo-labeling strategy combining softmax
prediction and structured clustering prediction is designed to
enhance pseudo-label quality. The IJDA mechanism, which
uses the Joint Mean and Variance Distance (JMVD) as the
distribution distance metric, further improves the intra-class
compactness and inter-class separability of the feature space.
Our proposed method demonstrates superior performance and
robust-ness in cross-domain fault diagnosis scenarios, as
evidenced by extensive experiments on two publicly available
bearing datasets.
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