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Abstract

Bearings play a critical role in rotating machinery, directly determining the safety and operational health of equipment.
However, with the advancement of industrial society, bearing failures due to malfunctions have become increasingly
prominent. Therefore, this study proposes an integrated model for bearing fault diagnosis by optimizing two key parameters of
the Least Squares Support Vector Machine (LSSVM) using a combination of the MGO moss growth optimization algorithm
and the PSO particle swarm algorithm: the regularization parameter and the kernel parameter. The high-dimensional feature
vectors from the output layer of a two-dimensional convolutional neural network (2D-CNN) are used as input for the LSSVM.

This model demonstrates higher accuracy and automation.

1 Introduction

With the development of industrial technology, research on
bearing fault diagnosis has been continuously deepening,
and one of the most commonly used methods is
convolutional neural networks (CNN)!.Convolutional
neural networks in deep learning can process large amounts
of data and effectively extract data features.Hoang et al.
proposed a feature-free bearing fault diagnosis method based
on convolutional neural networks (CNNs).1-D vibration
signals are converted into 2-D data, referred to as vibration
images. The vibration images are then fed into the CNN for
bearing fault classification”. This method effectively
identifies the fault damage categories of bearings, but the
model may perform poorly due to overfitting when data is
scarce.Wang et al. proposed a method for bearing fault
diagnosis using a multi-attention  one-dimensional
convolutional neural network (MAIDCNN)B., MAIDCNN
can adaptively recalibrate the features of each layer and
enhance the feature learning of fault pulses. The network
incorporates multiple attention modules, with each layer
adding additional parameters. The JAM module significantly
increases the weight calculation of channels and time
through cascaded EAM and CAM.However, when the
number of JAM layers exceeds five, the diagnostic accuracy
decreases, and the high complexity may lead to
overfitting.Zhang et al. proposed a fault diagnosis method
based on deep learning¥. The model adopts a hybrid
architecture of one-dimensional convolutional neural
networks (1IDCNN) and support vector machines (SVM) to
achieve dynamic adaptive feature extraction through
IDCNN and input the optimized feature vectors into the
classifier.In this process, the particle swarm optimization
(PSO) algorithm is introduced to adaptively adjust the
hyperparameters of SVM, constructing a composite
classification system that integrates deep feature learning
and intelligent parameter optimization. However, SVM

requires solving convex quadratic programming (QP)
problems, with a time complexity of O(nz) or higher,

resulting in slower training speeds.

ID-CNN can process raw time series data but struggle to
capture frequency-domain information or time-frequency
features. 2D-CNN can simultaneously extract features from
both the time domain and the frequency domain (or other
transform domains). Bearing fault signals are typically
transformed into two-dimensional images using short-time
Fourier transform (STFT), wavelet transform (CWT), or
time-frequency analysis. 2D-CNNs can better capture local
patterns  and  spatial  relationships  within  these
images.Furthermore, 2DCNNs perform more effectively in
complex fault patterns, extracting richer fault features from
time-frequency maps. Combined with the powerful
expressive capabilities of deep learning models, they
typically achieve higher diagnostic accuracyPIeI7®) Zhang
et al. proposed a method for diagnosing rotary machine
imbalance faults by combining time-frequency feature
oversampling (TFFO) with convolutional neural networks
(CNN)PL. They used synthetic minority oversampling
technique (SMOTE) to expand the minority samples to
achieve TFFO, obtaining a balanced dataset that was then
input into an improved 2DCNN based on LeNet-5 to achieve
fault diagnosis.This paper proposes a bearing fault diagnosis
model combining 2DCNN with MGO PSO-LSSVM. An
optimization algorithm combining MGO and PSO is used to
optimize the two parameters of LSSVM. LSSVM transforms
the inequality constraints in SVM into equality constraints,
converting the optimization problem into solving a system of
linear equations, thereby avoiding the complex quadratic
programming issues in traditional SVM. The optimization
objective of LSSVM is more explicit,minimizing the mean
squared error, making the parameter optimization objective
more intuitive. Optimal values can be quickly determined



through cross-validation or grid search. In bearing fault
diagnosis, LSSVM combined with CWT time-frequency.

2 Methodology

2.1Continuous wavelet transform (CWT)

Continuous Wavelet Transform (CWT)!'' uses wavelet
basis functions and adjusts the scale factor and time shift
factor of the wavelet basis functions to analyze the
characteristics of signals at different frequency scales and
time positions. Compared with the short-time Fourier
transform (STFT), CWT is more flexible. The mathematical
expression of CWT is:
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In this equation, represents the scaling factor, represents the
translation factor, and equation (2) represents the selected
wavelet basis function.

2.2Convolutional Neural Network (CNN)

Convolutional Neural Network!'!l is a deep learning model
mainly composed of convolution layers, pooling layers, and
fully connected layers, which performs well in fields such as
image recognition.

2.2.1 Convolutional Layer:The convolution layer is the core
component of CNN, consisting of multiple convolution
kernels that extract features from the input data through
convolution operations.The mathematical expression for
convolution operations is:
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represents the local features of the
i —th convolutional layer input; k; and b; are the weight
the j—th

convolution layer, respectively; M is the set of input feature

matrix and bias term corresponding to

out

maps, and x;" is the output feature map.After convolution, a

nonlinear activation function is typically used to introduce
nonlinearity.

2.2.2 Pooling Layer:Pooling layers reduce the
dimensionality of feature maps, which reduces computation
while preventing overfitting and improving network
robustness. Pooling is typically divided into average pooling
and max pooling.

2.2.3Fully Connected Layer:The fully connected layer maps
the feature maps extracted by the convolution layer and

pooling layer to the target space. The soff max function
is typically used for classification tasks during output. The
mathematical expression for the soff max function is:

features can rapidly classify different fault types, achieving
higher computational efficiency than SVM.

exp(z;
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the output values of neurons in the fully connected layer.

2.3MGO_PSO Optimization Algorithm

Moss Growth Optimization (MGO)['?! is a novel
meta-heuristic algorithm inspired by the growth process of
moss. MGO develops a creative mechanism called
“determining wind direction,” which utilizes the positional
relationship between most individuals and the optimal
individual to determine the evolutionary direction of all
individuals in the population, effectively avoiding the
problem of getting stuck in local optima.This study
combines the MGO moss growth optimization algorithm
with the PSO particle swarm optimization algorithm!'*! to
develop an optimized algorithm for bearing fault diagnosis.
This algorithm is used to optimize two key parameters of
LSSVM and minimize classification error. The optimized
algorithm formula is as follows:

Particle Velocity: ¥1(0)=0, Vie{l,2,...N} 5)

Global Optimal Position:
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Dynamic Weighting Update: w(¢) =0.9-0.5 % 7

Hybrid Update Strategy: For each iteration ¢ e {1,2,....T },
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where r, €[0,1]" is a uniform random variable and ®
denotes the Hadamard area.

Boundary Constraints: X; (¢) = clip(X/(¢),/b,ub) )
Adaptability Assessment and Updating:

i £(X,(0) < £(X,(=1): X,(6)= X (1)
if F(Xi(0))< f(g(e-1)):8(1) = X (1)
otherwise : g(t) = g(t —1)

otherwise: X, (t)= X, (t-1)

(10)

N is the number of particles; T is the maximum number of
iterations; dimis the dimension of the search space;/b and
ub are the lower and upper bounds of the variables, and
g(t)is the global optimal position at the # iteration.This

algorithm combines a dynamic weight adjustment
mechanism with the speed update strategy of particle swarm
optimization (used every 3 iterations) and a direct

,.(t—l))
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displacement strategy guided by the global optimum,
thereby enhancing local exploration capabilities while
maintaining population diversity.

2.4Least Squares Support Vector Machine (LSSVM)

Least Squares Support Vector Machine!'*! transforms the
optimization problem of SVM into a constrained quadratic
programming problem and uses the least squares method for
optimization and solution, thereby handling nonlinear
classification and regression problems.

The optimization objective formula is as follows:

. I - 1Y,
min,, J(w,e)=—w w+y-— ) e/s.t.
w.,b.e ( ) 2 7 2 ; (1 1)
y,.[ngo(x,.)+bJ =l-e, Vi
The Lagrange multiplier method is given by the following
formula:

L(w,b,e;a) = j(w,e)—iai {y,. [wT(p(xi)+b]—1+e,.}
(12)

In this equation, a, represents the Lagrange multiplier,
which is also the support value.

Solve for the optimal conditions using the following
formula:
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Solve the dual problem using the following formula:
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WhereQij = yiij(xi)T(D(xj) = yiyjK(xiﬂxj)a (15)
for(i,j=1,....N)
andy =[y;...;yx 1.1, =[1;...51] (16)

3 Model Establishment

This paper establishes a hybrid model combining CNN and
optimized LSSVM, which is efficient and robust, capable of
achieving high-precision diagnosis under different operating
conditions and complex fault scenarios. The CNN part is
responsible for feature extraction, while LSSVM uses an
optimization algorithm combining MGO and PSO to adjust
parameters and improve classification performance.By
extracting multi-level features through a convolutional
neural network (CNN), the model introduces an optimization
algorithm combining MGO and PSO to dynamically adjust
the kernel parameters of LSSVM, overcoming the efficiency
bottleneck of traditional parameter tuning and improving

classification accuracy.By combining the deep features of
CNN with the statistical learning advantages of LSSVM, the
model achieves high accuracy in fault classification tasks
and converges quickly on the test set. When the training data
scale is limited, the model enhances its generalization ability
through batch normalization and Dropout technology,
effectively alleviating the overfitting problem in small

sample scenarios. Its structural model is shown in Fig. 1.
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This paper uses continuous wavelet transform (CWT) to
convert the original vibration signal into a time-frequency
map, inputs the time-frequency image into a
two-dimensional convolutional neural network (2D-CNN)
for adaptive fault feature extraction, takes the results of the
fully connected layer as input for the least squares support
vector machine, and uses a combined MGO and PSO
algorithm to optimize the two key parameters of LSSVM to
complete the multi-level classification task.

3.1Continuous wavelet transform (CWT)

This paper employs color three-channel time-frequency
images generated using continuous wavelet transform.
Wavelets are selected as wavelet basis functions due to their
excellent time-frequency localization properties, making
them suitable for analyzing non-stationary signals. A total of
256 wavelets of different scales are generated, and the
wavelet center frequencies are obtained along with the scale
parameters, ultimately yielding the scale sequence and its
corresponding frequencies.By loading the original vibration
signal data, the signal is extracted from each sample, the
wavelet coefficient matrix is calculated, and the wavelet
coefficients are processed using absolute values. A
time-frequency plot is plotted, and all images are uniformly
scaled to 64x64x3 (RGB three channels) to meet the
subsequent CNN input requirements.

3.2 2DCNN-LSSVM

The input layer receives the time-frequency maps generated
by continuous wavelet transform. The first convolutional
layer uses a convolutional kernel with 16 channels to extract
local features. The second convolutional layer uses a
convolutional kernel with 32 channels to capture more
complex spatial patterns.Each convolutional layer uses the
LeakyReLU activation function. The LeakyReLU activation
function has a small positive slope when x < 0. Compared to
the ReLU activation function, LeakyReLU avoids the issue
of neuron death, allowing gradients to propagate. Its formula
is as follows:

x, x>0
LeakyReLU(x) = (17)
ax, x<0



Batch normalization is performed to improve stability. It
also includes a Dropout layer with a dropout rate of 0.1,
which means that 10% of the neurons are discarded to
prevent overfitting. The pooling layer is max pooling, which
gradually reduces the feature map size and enhances
translation invariance.The fully connected layer flattens the
multi-dimensional feature maps into vectors, which are then
fed into the LSSVM module. The kernel function of the
LSSVM module uses radial basis functions (RBF) to map
features to a high-dimensional space, with the formula as
follows:

Il x; —x;IP
K(x;,x;)=exp —Tz' (18)
By adjusting the kernel parameters (y: regularization
coefficient, 6 kernel width) using the MGO_PSO algorithm,
the classification error is minimized. The model structure
diagram is shown in Fig. 2.
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Fig. 2 2DCNN-LSSVM model structure diagram
4 Results

To validate the performance of the fault diagnosis model
adopted in this study for common bearing faults, this paper
uses the bearing fault dataset from Case Western Reserve
University (CWRU) 131, The CWRU dataset includes:

Ball faults: As a critical internal component of bearings, ball
faults can directly interfere with the smooth operation of the
bearing. Their vibration signals typically exhibit
high-frequency characteristics in spectral analysis.

Inner race (Inner Race) faults: Damage to the inner race
alters the dynamic characteristics of the bearing system. The
corresponding vibration signals are primarily low-frequency
components, but as the damage worsens, the signal
amplitude and frequency distribution exhibit significant
nonlinear changes.

Outer race (Outer Race) failure: This type of failure often
causes instability in equipment operation. Through
frequency domain analysis, characteristic frequency
components related to the failure location can be observed,
and the presence of such components can serve as criteria
for outer race damage.

Normal operating condition (Normal): Data from fault-free
operation serves as a baseline reference. By comparing and
analyzing the data, the distinctive features of signal
differences under different fault modes can be effectively
identified, providing a theoretical basis for fault diagnosis.

4.1Preprocessing of experimental data
The drive end bearings of the CWRU motors are SKF
6205-2RS, which were damaged by EDM, with artificial

damage on the inner, ball and outer races of the bearings.
The damage points on the outer ring were located at 3, 6 and
12 o'clock respectively. The vibration signals were collected
by accelerometers at a sampling frequency of 12 kHz under
loads of 0, 1, 2, and 3 HP and at speeds of 1797 r/min, 1772
t/min, 1750 r/min, and 1730 r/min, respectively. This
experiment was conducted at 12 kHz sampling frequency
and the bearing data were collected at a rotational speed of
1797 r/min and at 0, 1, 2, and 3 HP load conditions. The
operating conditions cover four categories: Normal, Inner
Race Fault, Outer Race Fault, and Ball Fault. Among them,
each type of fault is set to 0.007, 0.014 and 0.021 inches
wide three damage levels, a total of 10 states. The size of the
fault is 0.007 inches ball fault named B007, inner ring fault
named IR007, outer ring fault named ORO007, normal
bearing named Normal, and so on the damage degree of
0.014 inches and 0.021 inches.The experimental setup of the
dataset is shown in Fig. 3. The generated time-frequency
plots are shown in Fig. 4.

Fig. 3 Data set experiment settings
Its components are: a 1.5 kW (2 horsepower) electric motor;
a torque sensor/encoder; a power tester; and an electronic
controller.
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.\.h.‘.

Fig. 4 Time-frequency diagram

4.2Experimental Validation

The model used in this study achieved an average
small-batch accuracy of 99.92% after several rounds of
training, with a final small-batch accuracy of 100%, a
small-batch distortion of 2.2713x107°, and a base learning
rate of 0.0010. The accuracy plot is shown in Fig. 5(a), and

the confusion matrix is shown in Fig.5(b).
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Fig. 5 test results of CNN-MGO-LSSVM

Compared to the IDCNN-SVM model, the mini-batch loss
value of the IDCNN-SVM model on this test set is 0.0064,
with a base learning rate of 0.0010 and an accuracy rate of
99.6667%. The accuracy rate plot and confusion matrix of
the IDCNN-SVM test set are shown in Fig. 6(a) and Fig.
6(b) below.As can be seen, the model adopted in this study
performs well in sample generation, with a significantly
higher accuracy rate than the IDCNN-SVM model, and its
loss value 1is significantly lower than that of the
IDCNN-SVM  model, indicating that the model's
performance and generalization ability have been
improved.Upon examining the confusion matrix, the
accuracy rate for the 10 fault detection cases in the
confusion matrix of the model used in this study is 100%,
which is clearly superior to the confusion matrix of the
1DCNN-SVM model.
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Fig. 6 test results of IDCNN-SVM

According to the two network models shown in Fig. 7(a) and
Fig. 7(b), where 10 colors represent 1 normal bearing state
and 9 fault states, comparing the model used in this study
with the IDCNN-SVM model, it can be seen that the model
used in this study is ideal in terms of class separation and
class compactness, with all categories clearly separated and
the distances between classes more obvious.
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5 Conclusion

This paper addresses the issue of bearing fault diagnosis by
proposing a hybrid diagnostic model based on a
two-dimensional convolutional neural network (2D-CNN)
and an optimized least squares support vector machine
(LSSVM). The original one-dimensional vibration signal is
converted into a three-channel time-frequency image using
continuous wavelet transform (CWT). The 2D-CNN is then
employed to adaptively extract deep spatio-temporal
features.and combines the MGO lichen growth optimization
algorithm and PSO particle swarm algorithm to dynamically
optimize the regularization parameter (y) and kernel
parameter (c*) of LSSVM, effectively addressing the
bottlenecks of low efficiency and susceptibility to local
optima in traditional parameter tuning. The 2D-CNN
employs a two-layer convolutional structure (3%3 and 5x5

convolutional kernels) combined with LeakyReLU
activation functions and batch normalization
techniques,gradually compressing feature dimensions

through maximum pooling layers, with the high-dimensional
features output by the fully connected layer serving as input
for LSSVM. The LSSVM module employs a radial basis
kernel function (RBF) to map features to a high-dimensional
space, and uses the MGO and PSO hybrid optimization
algorithm to search for the optimal parameter combination
globally, significantly improving classification performance.

The experiment was conducted using the bearing dataset
from Case Western Reserve University (CWRU), covering
10 operating conditions (including normal conditions and
different damage diameters of the inner ring, outer ring, and
rolling elements).The results validated the model's excellent
generalization ability and robustness. t-SNE visualization
analysis further showed that the features extracted by the



model exhibit significant inter-class separability and
intra-class compactness in low-dimensional space, indicating
its superior discriminative ability in high-dimensional
feature mapping.Additionally, the model -effectively
mitigates overfitting risks in small-sample scenarios by
incorporating a Dropout layer (dropout rate of 0.1) and batch
normalization techniques.
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