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Abstract 

To address the challenges of cross-domain fault diagnosis for industrial rotating machinery under strong noise interference and 

time-varying operating conditions, this paper proposes a novel method based on Multi-Branch Convolutional Neural Network 

(MBCNN) and a mixed discrepancy measurement strategy. The proposed MBCNN model is designed as a feature extractor, 

integrating parallel branches for moving average smoothing, Gaussian filtering, and original vibration signals, which effectively 

enhances time-frequency feature representation while suppressing noise interference. Furthermore, to improve feature 

distribution alignment between source and target domains, a Mean-Variance Mixed Discrepancy (MVMD) based domain 

adaptation module is introduced. This module jointly leverages Maximum Mean Square Discrepancy (MMSD) and Variance 

Discrepancy Representation (VDR) to perform multi-granularity statistical alignment. Extensive experiments on the CWRU 

bearing dataset, including noise robustness and cross-condition transfer tasks, Showcase the robust noise immunity and multi-

domain diagnostic prowess of the proposed approach, offering a practical and dependable approach for intelligent fault diagnosis 

in complex industrial environments. 

1 Introduction 

Rolling bearings are essential in rotating equipment and are 

extensively employed across different industries, including 

power generation systems, new energy vehicles, and aerospace. 

The safety, stability, and reliability of the entire system largely 

depend on their operating conditions [1]. The swift rise of 

artificial intelligence in recent times has led to the widespread 

adoption of deep learning techniques for diagnosing 

machinery faults, thanks to its prowess in extracting key 

features and identifying issues effectively [2]. However, in 

practical industrial environments, vibration signals are often 

affected by random noise, variable loads, and time-varying 

operating conditions, resulting in significant distribution 

discrepancies between training and testing datasets. This 

distribution shift greatly hinders the effectiveness of 

traditional deep learning techniques in performing cross-

domain fault diagnosis. 

 

Transfer learning overcomes the scarcity of labeled data in the 

target domain by leveraging knowledge from a related source 

domain, and has become a popular research direction in 

intelligent fault diagnosis[3]. Among these approaches, 

domain adaptation (DA) enhances model accuracy in the target 

domain by minimizing feature distribution gaps between 

source and target data. Current DA techniques primarily fall 

into two categories: statistical discrepancy-based distribution 

alignment and adversarial-based domain-invariant feature 

learning. For instance, Rathore et al.[4] introduced a multiple 

kernel MMD to perform multi-scale domain mean embedding 

alignment; Song et al.[5] partitioned sub-domains according to 

fault types and employed Local Maximum Mean Discrepancy 

(LMMD) to reduce sub-domain distribution differences; Qin 

et al.[6] To optimize the feature extractor and improve domain 

confusion, an imbalanced adversarial training strategy is 

proposed, along with the incorporation of a covariance 

alignment loss (CORAL). Although these methods have 

achieved promising results in cross-domain fault diagnosis of 

rotating machinery, their robustness and feature representation 

capabilities remain limited under complex noise interference 

and significant condition variations. Moreover, most 

approaches rely on single-statistic-based distribution 

alignment, which fails to comprehensively model the complex 

distribution shift characteristics of vibration signals. 

 

To address these challenges, a new cross-domain diagnosis 

method for rolling bearings is developed by integrating a 

Multi-Branch Convolutional Neural Network (MBCNN) with 

a Mean-Variance Mixed Discrepancy (MVMD) metric. The 

MBCNN employs a multi-branch denoising structure that 

integrates moving average filtering, Gaussian filtering, and 

raw vibration signals to improve noise-robust feature 

extraction and time-frequency representation. Meanwhile, 

MVMD jointly combines Maximum Mean Square 

Discrepancy (MMSD) and Variance Discrepancy 

Representation (VDR) to enable multi-level statistical 
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alignment between domains. Extensive experiments on the 

CWRU bearing dataset, involving variable noise and cross-

condition transfer tasks, confirm that the designed approach 

delivers superior diagnosis accuracy, noise resistance, and 

cross-domain adaptability in complex industrial scenarios. 

2. Theoretical Background 

2.1 Problem description of domain adaptation 

As a crucial branch of transfer learning, DA focuses on 

mitigating distribution discrepancies between domains and 

improving model performance in the target domain by 

transferring knowledge from the source domain. In practical 

applications, the annotations for the source domain dataset 

1{( , )} sns s

s i i iD x y ==  are available, where sn  indicates the 

quantity of labeled samples in the source domain, and each 

sample 
s

ix  has a corresponding fault label 
s

iy . Similarly, the 

unlabeled target domain dataset is denoted as 1{( )} tnt

t j jD x == , 

where tn  represents target domain sample count, and t

jx  

denotes the j-th instance in the target domain. Although the 

feature space is identical for both domains, their probability 

distributions differ, due to distribution shifts, the 

generalization ability of source-trained models significantly 

degrades in the target domain, which severely restricts the 

performance of cross-domain fault diagnosis.  

2.2 Maximum mean square discrepancy 

Maximum Mean Discrepancy (MMD) is a statistical measure 

for quantifying the difference between two probability 

distributions. When two datasets are nonlinearly separable in 

the original space, they can be projected into a Reproducing 

Kernel Hilbert Space (RKHS) using a mapping function. In 

this new space, MMD measures the distributional difference 

by computing the squared distance between the mean 

embeddings of the two datasets. 

 

To further enhance the ability to characterize distribution 

differences, Qian et al.[7] proposed the Maximum Mean 

Square Discrepancy (MMSD) method based on MMD. This 

approach employs a tensor-product kernel to map data into a 

higher-dimensional feature space and measures the 

discrepancy between the second-order moment embeddings of 

two data domains with distinct distributions. Specifically, 

MMSD is defined as the squared norm of the difference 

between the mean square embeddings of the two domains in 

the tensor-product space: 
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Where ( )K   is the feature mapping function in the RKHS, 

typically implemented as a Gaussian kernel function. In 

practice, for finite-sample scenarios, the expectations are 

typically replaced by empirical averages. 

2.3 Variance difference representation 

Similar to the MMD principle, Variance Difference 

Representation (VDR) is based on kernel methods and 

constructs an explicit measure of variance differences in the 

feature space, effectively representing distribution 

discrepancies through the variance information of data points. 

 

Specifically, VDR constructs the following basis function by 

computing the difference between the kernel function value 

and its expectation, in order to reflect the variance information 

of data points in the RKHS: 

 ( ) ( ) ( )( )
2

, , ,x K x E K x


  =  −    (2) 

Where ( ),K x   denotes the kernel function, ( ),E x    

represents the expectation over the data distribution, and   is 

the tensor product operator. Based on this basis function, an 

new RKHS tensor-product space could describe the variance 

discrepancies: 
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3. Framework for Fault Diagnosis Modeling 

This study introduces a cross-domain fault detection 

framework for rolling bearings based on a MBCNN and a 

MVMD metric, as illustrated in Figure 1. The model includes 

a feature extraction component and a classification module. 

The feature extractor employs a multi-branch denoising 

network to project labeled source and unlabeled target domain 

features into a shared subspace, enhancing the extraction of 

common fault features under different conditions. The 

classifier comprises two fully connected layers (FC1 and FC2), 

with the DA module integrated into the FC2 layer to minimize 

the MVMD distance between features. the model achieves 

effective distribution alignment and robust fault diagnosis 

across domains. 

3.1 Shared feature extraction network 

To effectively extract domain-invariant shared features, 

designs an MBCNN-based shared feature extraction 

framework. A multi-modal input module integrates identity-

mapped signals, moving average smoothed signals, and 

Gaussian-filtered signals as parallel branches to enhance 

feature diversity. Each branch adopts a convolutional structure 

with shared parameters, where convolutional layers with 

different kernel sizes are stacked to extract features at multiple 

scales, ranging from global to local levels. Multi-scale 

information is thus effectively captured within each branch. 

The features from all branches are then fused to improve the 

overall feature representation capability. 

 

The MBCNN network comprises five convolutional-pooling 

layers, and ReLU activation functions to introduce 

nonlinearity. The detailed network parameter configuration is 

shown in Table 1. The kernel sizes of the convolutional layers 

decrease progressively from 6 to 3. By designing multi-scale 

convolution kernels, the network can better adapt to signal 

variations across different frequencies and time scales, thereby 

improving its robustness to noise. 
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Fig. 1 Fault diagnosis model architecture 

 

Table 1. Network model parameter table 

 

Layer type Table column subhead 

Moving average layer Window size=5, stride=1 

Gaussian filtering layer Window size=5, stride=1 

Conv1d-1 
Conv(16×(1×6)); BN; 

ReLU; MP(2×2) 

Conv1d-2 
Conv(32×(16×5)); BN; 

ReLU; MP(2×2) 

Conv1d-3 
Conv(64×(32×4)); BN; 

ReLU; MP(2×2) 

Conv1d-4 
Conv(128×(64×3)); BN; 

ReLU;MP(2×2) 

Conv1d-5 
Conv(256×(128×3)); BN; 

ReLU; MP(2×2) 

Flatten 
Global Avg Pool, Feature 

fusion 

FC1 FC(768×128);ReLU 

FC2 FC(128×class_number) 

3.2 Mean-Variance mixed discrepancy 

Given the limitations of a single metric in characterizing 

distribution discrepancies this paper proposes an improved 

distance measurement method called Mean-Variance Mixed 

Discrepancy (MVMD). This approach integrates the 

advantages of MMSD in optimizing mean square 

discrepancies and VDR in capturing variance differences, 

thereby improving the ability to capture complex distribution 

characteristics. 

 

MVMD is jointly formulated based on Equations (1) and (3) 

as follows: 
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Where   is a trade-off parameter. 

3.3 Loss function 

During training, the model optimizes a composite loss function 

to enhance feature extraction capability while learning the 

distribution alignment relationship between domains, leading 

to enhanced accuracy in diagnosing faults across different 

domains. 

 

Among them, the classification loss is used to evaluate the 

classification performance of the classifier on labeled source 

domain samples, which is computed by the cross-entropy loss 

function as follows: 

 ( )
s

s s
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1
ˆ ,

n

i i

i

L J y y
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=   (5) 

The DA loss dL  is based on the MVMD metric defined in 

Equation (4), and is designed to achieve distribution alignment 

by minimizing the loss function. 

 ( , )s td MVMD D DL L=  (6) 

The total loss function comprises two components, with the 

final objective defined as their weighted sum of classification 

and DA losses: 

 d
( , )

min ( )c
w b

L L



→

+  (7) 

Where   is a trade-off parameter controlling the relative 

importance of the two losses. By optimizing this loss via 

backpropagation, the model parameters are iteratively updated 

to simultaneously improve classification accuracy and cross-

domain adaptability. 

4. Experimental Verification 

4.1 Dataset description 

In this study, we utilized the well-known CWRU bearing 

dataset sourced from Case Western Reserve University for our 

validation experiments. Illustrated in Figure 2, the 

experimental platform consists of a motor, bearings, a torque 

sensor, and a dynamometer. The fault data were gathered at the 

drive-end bearing with a sampling rate of 12 kHz, covering 

four operating states: normal (NO), outer race fault (OF), inner 

race fault (IF), and ball fault (BF). Each fault type includes 

three defect sizes (0.007 inch, 0.014 inch, and 0.021 inch), 

resulting in ten labeled fault categories in total. 

 

To evaluate the model’s adaptation capability under variable 

working conditions, four operating loads (0 HP, 1 HP, 2 HP, 

and 3 HP) are configured to construct transfer tasks. A sliding 

Domain 

adaptation loss
Source Domain

Target Domain

Classification 

loss

 s
i

yJMVDL

Feature Extractor Classifier

Forward Propagation Back Propagation

Weight

 sharing

JMVDLcL

FC1 FC2

FC1 FC2
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window technique is applied to segment 200 samples per 

health condition, with each sample containing 1024 

consecutive data points. 

 

 
Fig. 2 CWRU bearing fault test rig 

4.2 Noise robustness test 

In industrial applications, rolling bearings often operate in 

environments with severe noise interference and complex 

working conditions, where vibration signals are highly 

susceptible to noise contamination. To evaluate the noise 

robustness of the proposed MBCNN feature extraction model, 

Experimental data were subjected to the addition of Gaussian 

white noise at varying signal-to-noise ratio levels, resulting in 

five distinct noise scenarios. Comparative experiments were 

conducted under the same conditions with existing models, 

including CNN, WDCNN, and MSCNN, to assess fault 

diagnosis performance in noisy environments. The 

experiments were performed using the 2 HP load dataset, and 

the results are presented in Figure 3. 

 
Fig. 3 Accuracy under noise variation 

 

The LeNet-based 1D CNN, limited by its shallow architecture 

and restricted receptive field, shows weak feature extraction 

ability, achieving only 86.4% accuracy even at 6dB. WDCNN 

improves time-domain feature capture with wide convolution 

kernels but struggles under strong noise due to its fixed-scale 

design. Although MSCNN enhances feature diversity through 

a multi-scale structure, the absence of adaptive feature fusion 

causes critical fault features to be overwhelmed when SNR < 

-2dB. Conversely, the MBCNN that we introduce 

demonstrates consistently high accuracy across various noise 

levels, outperforming the compared models. 

4.3 Cross-condition fault diagnosis experiment 

Assessing the performance and advantages of our newly 

developed DA model for cross-condition fault detection, we 

performed comparative tests with traditional approaches that 

focus on aligning distributions. with emphasis on the 

advantages of the MVMD metric. The models under 

comparison encompass DDC[8], which utilizes MMD for 

alignment at the DA layer, the CORAL-based DCORAL [9], 

and the baseline MBCNN without transfer learning. 

 

All models share the same network architecture and 

hyperparameter settings. The results are averaged over five 

separate runs to ensure statistical reliability. Table 2 presents 

the detailed findings. The proposed MVMD model achieved 

an average diagnostic accuracy of 98.90% across 12 cross-

condition transfer tasks, significantly outperforming other 

methods. The baseline MBCNN model without transfer 

learning reached only 80.25%, confirming the necessity of DA 

in cross-condition fault diagnosis. DDC and DCORAL, which 

rely on single-statistic alignment (MMD or CORAL), obtained 

average accuracies of 93.06% and 94.38%, respectively, 

indicating limitations in fully capturing distribution 

discrepancies. In contrast, MVMD improves feature 

distribution alignment by jointly optimizing both mean and 

variance differences, demonstrating the superiority of multi-

statistic alignment. 

 

Table 2. Diagnostic accuracy (%) of cross-condition (0-3 hp) 

 

Transfer 

task 

MBCNN 

(base) 
DDC DCOROL 

MBCNN-

MVMD 

0→1 82.75 94.67 95.37 98.35 

0→2 79.62 90.65 92.63 99.60 

0→3 78.43 94.65 87.81 98.25 

1→0 81.87 95.21 93.82 99.10 

1→2 80.41 97.92 96.15 99.90 

1→3 78.28 90.70 93.59 98.85 

2→0 77.42 95.50 98.92 99.70 

2→1 81.98 97.65 98.20 99.15 

2→3 84.80 96.28 96.50 99.57 

3→0 78.66 84.60 96.79 98.30 

3→1 80.32 88.50 91.35 97.50 

3→2 82.65 93.70 94.30 99.48 

Average 80.25 93.06 94.38 98.90 

 

To evaluate the feature transferability and model DA 

performance, T-SNE was employed to visualize the input data 

and the features extracted from the FC2 layer in the 2HP→
1HP scenario. As shown in Figure 4. The baseline MBCNN 

exhibited severe overlap with poor class separability, while 

DDC and DCORAL presented limited capability in 

distinguishing inter-class distributions, resulting in insufficient 

feature fusion across domains. In comparison, the MVMD 

method produced highly compact clusters with significant 

overlap between source and target domain samples for all 10 

fault categories, confirming its superior domain alignment and 

adaptation capability at the feature level. 
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(a) Original distribution (b) MBCNN(base) 

  
((c) DDC (d) DCOROL 

 

 

(e)MBCNN-JMVD  

Fig. 4 Visualization of different transfer tasks. 

 

5 Conclusion 

To address the challenges of cross-domain fault diagnosis 

caused by strong noise interference and time-varying 

operating conditions in industrial equipment, the study 

develops a a cross-condition fault diagnosis framework based 

on a Multi-Branch CNN (MBCNN) and a Mean-Variance 

Mixed Discrepancy (MVMD) metric. Systematic experiments 

on the CWRU bearing dataset under variable working 

conditions validated the effectiveness of the approach 

introduced. The pivotal conclusions are outlined as follows: 

 

(1) The multi-branch feature enhancement mechanism 

significantly improves noise robustness. The designed 

MBCNN integrates moving average filtering, Gaussian 

filtering, and raw signals through parallel branches, effectively 

enhancing feature representation and suppressing noise 

interference. Noise robustness was confirmed through 

variable-noise experiments. 

 

(2) The hybrid discrepancy measurement MVMD enables 

accurate cross-domain alignment. Through the simultaneous 

adjustment of the mean and variance of the inter-domain 

distributions, MVMD effectively mitigates feature distribution 

shifts caused by condition variations. The proposed model 

achieved an average diagnostic accuracy of 98.90% across 12 

cross-condition transfer tasks, outperforming existing methods 

and demonstrating superior cross-domain adaptability. 
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