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Abstract

To address the challenges of cross-domain fault diagnosis for industrial rotating machinery under strong noise interference and
time-varying operating conditions, this paper proposes a novel method based on Multi-Branch Convolutional Neural Network
(MBCNN) and a mixed discrepancy measurement strategy. The proposed MBCNN model is designed as a feature extractor,
integrating parallel branches for moving average smoothing, Gaussian filtering, and original vibration signals, which effectively
enhances time-frequency feature representation while suppressing noise interference. Furthermore, to improve feature
distribution alignment between source and target domains, a Mean-Variance Mixed Discrepancy (MVMD) based domain
adaptation module is introduced. This module jointly leverages Maximum Mean Square Discrepancy (MMSD) and Variance
Discrepancy Representation (VDR) to perform multi-granularity statistical alignment. Extensive experiments on the CWRU
bearing dataset, including noise robustness and cross-condition transfer tasks, Showcase the robust noise immunity and multi-
domain diagnostic prowess of the proposed approach, offering a practical and dependable approach for intelligent fault diagnosis

in complex industrial environments.
1 Introduction

Rolling bearings are essential in rotating equipment and are
extensively employed across different industries, including

power generation systems, new energy vehicles, and acrospace.

The safety, stability, and reliability of the entire system largely
depend on their operating conditions [1]. The swift rise of
artificial intelligence in recent times has led to the widespread
adoption of deep Ilearning techniques for diagnosing
machinery faults, thanks to its prowess in extracting key
features and identifying issues effectively [2]. However, in
practical industrial environments, vibration signals are often
affected by random noise, variable loads, and time-varying
operating conditions, resulting in significant distribution
discrepancies between training and testing datasets. This
distribution shift greatly hinders the effectiveness of
traditional deep learning techniques in performing cross-
domain fault diagnosis.

Transfer learning overcomes the scarcity of labeled data in the
target domain by leveraging knowledge from a related source
domain, and has become a popular research direction in
intelligent fault diagnosis[3]. Among these approaches,
domain adaptation (DA) enhances model accuracy in the target
domain by minimizing feature distribution gaps between
source and target data. Current DA techniques primarily fall
into two categories: statistical discrepancy-based distribution
alignment and adversarial-based domain-invariant feature

learning. For instance, Rathore et al.[4] introduced a multiple
kernel MMD to perform multi-scale domain mean embedding
alignment; Song et al.[5] partitioned sub-domains according to
fault types and employed Local Maximum Mean Discrepancy
(LMMD) to reduce sub-domain distribution differences; Qin
et al.[6] To optimize the feature extractor and improve domain
confusion, an imbalanced adversarial training strategy is
proposed, along with the incorporation of a covariance
alignment loss (CORAL). Although these methods have
achieved promising results in cross-domain fault diagnosis of
rotating machinery, their robustness and feature representation
capabilities remain limited under complex noise interference
and significant condition variations. Moreover, most
approaches rely on single-statistic-based  distribution
alignment, which fails to comprehensively model the complex
distribution shift characteristics of vibration signals.

To address these challenges, a new cross-domain diagnosis
method for rolling bearings is developed by integrating a
Multi-Branch Convolutional Neural Network (MBCNN) with
a Mean-Variance Mixed Discrepancy (MVMD) metric. The
MBCNN employs a multi-branch denoising structure that
integrates moving average filtering, Gaussian filtering, and
raw vibration signals to improve noise-robust feature
extraction and time-frequency representation. Meanwhile,
MVMD jointly combines Maximum Mean Square
Discrepancy (MMSD) and Variance Discrepancy
Representation (VDR) to enable multi-level statistical



alignment between domains. Extensive experiments on the
CWRU bearing dataset, involving variable noise and cross-
condition transfer tasks, confirm that the designed approach
delivers superior diagnosis accuracy, noise resistance, and
cross-domain adaptability in complex industrial scenarios.

2. Theoretical Background

2.1 Problem description of domain adaptation

As a crucial branch of transfer learning, DA focuses on
mitigating distribution discrepancies between domains and
improving model performance in the target domain by
transferring knowledge from the source domain. In practical
applications, the annotations for the source domain dataset

D, ={(x/,y/)}~, are available, where n  indicates the
quantity of labeled samples in the source domain, and each
sample x; has a corresponding fault label y; . Similarly, the

ny

unlabeled target domain dataset is denoted as D, = {(x})}., ,

where 7, represents target domain sample count, and x]

denotes the j-th instance in the target domain. Although the
feature space is identical for both domains, their probability
distributions  differ, due to distribution shifts, the
generalization ability of source-trained models significantly
degrades in the target domain, which severely restricts the
performance of cross-domain fault diagnosis.

2.2 Maximum mean square discrepancy

Maximum Mean Discrepancy (MMD) is a statistical measure
for quantifying the difference between two probability
distributions. When two datasets are nonlinearly separable in
the original space, they can be projected into a Reproducing
Kernel Hilbert Space (RKHS) using a mapping function. In
this new space, MMD measures the distributional difference
by computing the squared distance between the mean
embeddings of the two datasets.

To further enhance the ability to characterize distribution
differences, Qian et al.[7] proposed the Maximum Mean
Square Discrepancy (MMSD) method based on MMD. This
approach employs a tensor-product kernel to map data into a
higher-dimensional feature space and measures the
discrepancy between the second-order moment embeddings of
two data domains with distinct distributions. Specifically,
MMSD is defined as the squared norm of the difference
between the mean square embeddings of the two domains in
the tensor-product space:

MMSD’[H ® H,D,,D,] =
.
|E, [hCx, ) @ k(x,, )] = E, [k (- x,) @ k(x|

H®H

Where K(:) is the feature mapping function in the RKHS,

typically implemented as a Gaussian kernel function. In
practice, for finite-sample scenarios, the expectations are
typically replaced by empirical averages.

2.3 Variance difference representation

Similar to the MMD principle, Variance Difference
Representation (VDR) is based on kernel methods and
constructs an explicit measure of variance differences in the
feature  space, effectively representing  distribution
discrepancies through the variance information of data points.

Specifically, VDR constructs the following basis function by
computing the difference between the kernel function value
and its expectation, in order to reflect the variance information
of data points in the RKHS:

e(x)=(K (x)-E[K (x)])”

Where K(x,-) denotes the kernel function, E [K(x,-)}

2

represents the expectation over the data distribution, and ® is
the tensor product operator. Based on this basis function, an
new RKHS tensor-product space could describe the variance
discrepancies:

VDR’ [H, ® H,.D,.D,]=||E,7(X..)~ E,z(X, ), . (3)

H,®H,

3. Framework for Fault Diagnosis Modeling

This study introduces a cross-domain fault detection
framework for rolling bearings based on a MBCNN and a
MVMD metric, as illustrated in Figure 1. The model includes
a feature extraction component and a classification module.
The feature extractor employs a multi-branch denoising
network to project labeled source and unlabeled target domain
features into a shared subspace, enhancing the extraction of
common fault features under different conditions. The
classifier comprises two fully connected layers (FC1 and FC2),
with the DA module integrated into the FC2 layer to minimize
the MVMD distance between features. the model achieves
effective distribution alignment and robust fault diagnosis
across domains.

3.1 Shared feature extraction network

To effectively extract domain-invariant shared features,
designs an MBCNN-based shared feature extraction
framework. A multi-modal input module integrates identity-
mapped signals, moving average smoothed signals, and
Gaussian-filtered signals as parallel branches to enhance
feature diversity. Each branch adopts a convolutional structure
with shared parameters, where convolutional layers with
different kernel sizes are stacked to extract features at multiple
scales, ranging from global to local levels. Multi-scale
information is thus effectively captured within each branch.
The features from all branches are then fused to improve the
overall feature representation capability.

The MBCNN network comprises five convolutional-pooling
layers, and ReLU activation functions to introduce
nonlinearity. The detailed network parameter configuration is
shown in Table 1. The kernel sizes of the convolutional layers
decrease progressively from 6 to 3. By designing multi-scale
convolution kernels, the network can better adapt to signal
variations across different frequencies and time scales, thereby
improving its robustness to noise.
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Fig. 1 Fault diagnosis model architecture

Table 1. Network model parameter table

Table column subhead
Window size=5, stride=1
Window size=5, stride=1

Conv(16x(1x6)); BN;

Layer type
Moving average layer
Gaussian filtering layer

Convld-1 ReLU; MP(2x2)
Conv(32x(16x5)); BN;
Convld-2 ReLU: MP(2x2)
Conv(64%(32%4)); BN;
Convld-3 ReLU; MP(2x2)
Conv(128x(64%3)); BN;
Convld-4 ReLU;MP(2x2)
Conv(256x(128%3)); BN;
Convld-3 ReLU; MP(2x2)
Flatten Global Avg Pool, Feature
fusion
FC1 FC(768%128);ReLU
FC2 FC(128xclass number)

3.2 Mean-Variance mixed discrepancy

Given the limitations of a single metric in characterizing
distribution discrepancies this paper proposes an improved
distance measurement method called Mean-Variance Mixed
Discrepancy (MVMD). This approach integrates the
advantages of MMSD in optimizing mean square
discrepancies and VDR in capturing variance differences,
thereby improving the ability to capture complex distribution
characteristics.

MVMD is jointly formulated based on Equations (1) and (3)
as follows:

MVMD(D,,D,) = a-MMSD*[H ® H,D,,D,]+

4)
(1-a)-VDR*[H,® H,,D,,D,]

Where « is a trade-off parameter.

3.3 Loss function

During training, the model optimizes a composite loss function
to enhance feature extraction capability while learning the
distribution alignment relationship between domains, leading

Back Propagation Lc

to enhanced accuracy in diagnosing faults across different
domains.

Among them, the classification loss is used to evaluate the
classification performance of the classifier on labeled source
domain samples, which is computed by the cross-entropy loss
function as follows:

L=L300) 5)

ng =

The DA loss L, is based on the MVMD metric defined in

Equation (4), and is designed to achieve distribution alignment
by minimizing the loss function.
(6)

The total loss function comprises two components, with the
final objective defined as their weighted sum of classification
and DA losses:

L, = LMVMD(DS ,D,)

Jmin (L, +AL,) @)

Where A is a trade-off parameter controlling the relative
importance of the two losses. By optimizing this loss via
backpropagation, the model parameters are iteratively updated
to simultaneously improve classification accuracy and cross-
domain adaptability.

4. Experimental Verification

4.1 Dataset description

In this study, we utilized the well-known CWRU bearing
dataset sourced from Case Western Reserve University for our
validation experiments. Illustrated in Figure 2, the
experimental platform consists of a motor, bearings, a torque
sensor, and a dynamometer. The fault data were gathered at the
drive-end bearing with a sampling rate of 12 kHz, covering
four operating states: normal (NO), outer race fault (OF), inner
race fault (IF), and ball fault (BF). Each fault type includes
three defect sizes (0.007 inch, 0.014 inch, and 0.021 inch),
resulting in ten labeled fault categories in total.

To evaluate the model’s adaptation capability under variable
working conditions, four operating loads (0 HP, 1 HP, 2 HP,
and 3 HP) are configured to construct transfer tasks. A sliding



window technique is applied to segment 200 samples per
sample containing

health condition, with each 1024

consecutive data points.

Torque
encoder

Dynamometer

Fig.2 WRU B.eariﬁg fault test rig

4.2 Noise robustness test

In industrial applications, rolling bearings often operate in
environments with severe noise interference and complex
working conditions, where vibration signals are highly
susceptible to noise contamination. To evaluate the noise
robustness of the proposed MBCNN feature extraction model,
Experimental data were subjected to the addition of Gaussian
white noise at varying signal-to-noise ratio levels, resulting in
five distinct noise scenarios. Comparative experiments were
conducted under the same conditions with existing models,
including CNN, WDCNN, and MSCNN, to assess fault
diagnosis performance in noisy environments. The
experiments were performed using the 2 HP load dataset, and
the results are presented in Figure 3.
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Fig. 3 Accuracy under noise variation

The LeNet-based 1D CNN, limited by its shallow architecture
and restricted receptive field, shows weak feature extraction
ability, achieving only 86.4% accuracy even at 6dB. WDCNN
improves time-domain feature capture with wide convolution
kernels but struggles under strong noise due to its fixed-scale
design. Although MSCNN enhances feature diversity through
a multi-scale structure, the absence of adaptive feature fusion
causes critical fault features to be overwhelmed when SNR <
-2dB. Conversely, the MBCNN that we introduce
demonstrates consistently high accuracy across various noise
levels, outperforming the compared models.

4.3 Cross-condition fault diagnosis experiment

Assessing the performance and advantages of our newly
developed DA model for cross-condition fault detection, we
performed comparative tests with traditional approaches that
focus on aligning distributions. with emphasis on the
advantages of the MVMD metric. The models under
comparison encompass DDC[8], which utilizes MMD for
alignment at the DA layer, the CORAL-based DCORAL [9],
and the baseline MBCNN without transfer learning.

All models share the same network architecture and
hyperparameter settings. The results are averaged over five
separate runs to ensure statistical reliability. Table 2 presents
the detailed findings. The proposed MVMD model achieved
an average diagnostic accuracy of 98.90% across 12 cross-
condition transfer tasks, significantly outperforming other
methods. The baseline MBCNN model without transfer
learning reached only 80.25%, confirming the necessity of DA
in cross-condition fault diagnosis. DDC and DCORAL, which
rely on single-statistic alignment (MMD or CORAL), obtained
average accuracies of 93.06% and 94.38%, respectively,
indicating limitations in fully capturing distribution
discrepancies. In contrast, MVMD improves feature
distribution alignment by jointly optimizing both mean and
variance differences, demonstrating the superiority of multi-
statistic alignment.

Table 2. Diagnostic accuracy (%) of cross-condition (0-3 hp)

Transfer MBCNN MBCNN-
task (base) DDC DCOROL MVMD
0—1 82.75 94.67 95.37 98.35
0—2 79.62 90.65 92.63 99.60
0—-3 78.43 94.65 87.81 98.25
1—0 81.87 95.21 93.82 99.10
1-2 80.41 97.92 96.15 99.90
1-3 78.28 90.70 93.59 98.85
2—0 77.42 95.50 98.92 99.70
2—1 81.98 97.65 98.20 99.15
23 84.80 96.28 96.50 99.57
30 78.66 84.60 96.79 98.30
351 80.32 88.50 91.35 97.50
352 82.65 93.70 94.30 99.48

Average 80.25 93.06 94.38 98.90

To evaluate the feature transferability and model DA
performance, T-SNE was employed to visualize the input data
and the features extracted from the FC2 layer in the 2HP—
1HP scenario. As shown in Figure 4. The baseline MBCNN
exhibited severe overlap with poor class separability, while
DDC and DCORAL presented limited capability in
distinguishing inter-class distributions, resulting in insufficient
feature fusion across domains. In comparison, the MVMD
method produced highly compact clusters with significant
overlap between source and target domain samples for all 10
fault categories, confirming its superior domain alignment and
adaptation capability at the feature level.
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Fig. 4 Visualization of different transfer tasks.

5 Conclusion

To address the challenges of cross-domain fault diagnosis
caused by strong noise interference and time-varying
operating conditions in industrial equipment, the study
develops a a cross-condition fault diagnosis framework based
on a Multi-Branch CNN (MBCNN) and a Mean-Variance
Mixed Discrepancy (MVMD) metric. Systematic experiments
on the CWRU bearing dataset under variable working
conditions validated the effectiveness of the approach
introduced. The pivotal conclusions are outlined as follows:

(1) The multi-branch feature enhancement mechanism
significantly improves noise robustness. The designed
MBCNN integrates moving average filtering, Gaussian
filtering, and raw signals through parallel branches, effectively
enhancing feature representation and suppressing noise
interference. Noise robustness was confirmed through
variable-noise experiments.

(2) The hybrid discrepancy measurement MVMD enables
accurate cross-domain alignment. Through the simultaneous
adjustment of the mean and variance of the inter-domain
distributions, MVMD effectively mitigates feature distribution

shifts caused by condition variations. The proposed model
achieved an average diagnostic accuracy of 98.90% across 12
cross-condition transfer tasks, outperforming existing methods
and demonstrating superior cross-domain adaptability.
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