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Abstract 

Traditional rolling bearing intelligent fault diagnosis methods using a single signal input often face challenges such as low 

diagnostic accuracy and poor robustness to noise in practical applications. This paper proposes a multi-branch convolutional 

neural network (CNN) model based on multi-scale and multi-modal input data. The model realizes multimodal multiscale inputs 

by means of variational modal decomposition (VMD) and STFT transforms while combining the original signals. Compared 

with a single signal input, richer and complementary fault features can be extracted, fully reflecting the multidimensional 

information of the fault. By designing multiple parallel CNN branches, the model is able to extract key features from the signal 

at different scales and modalities and perform feature fusion through the attention mechanism, which further improves the 

diagnostic accuracy and robustness to noise. 

1 Introduction 

Rolling bearings, as key components in rotating machinery, 

are widely used in avionics, wind energy, construction 

machinery, and other fields[1]. Its health state has a crucial 

impact on the normal operation and service life of mechanical 

equipment[2]. Therefore, bearing fault diagnosis is of great 

significance. 

 

Traditional bearing fault diagnosis methods rely on time-

frequency analysis of vibration signals and machine learning[4], 

in which the two are executed independently, failing to 

optimize the joint performance and relying on experts' 

experience to select features, which is time-consuming and 

laborious. 

 

Bearings are susceptible to dynamic loads in complex 

operating environments, resulting in vibration signals with 

nonlinear and non-smooth characteristics[7], which makes fault 

feature extraction more difficult. In the diagnostic methods of 

deep learning for bearing faults, the vibration signals are 

usually pre-processed first, aiming at fully extracting the fault 

features. Existing frequency and time-frequency domain 

analysis methods, such as the Fast Fourier Transform (FFT)[8], 

Wavelet Transform9, and Short-Time Fourier Transform 

(STFT)[10]. Among them, the FFT cannot capture the time-

varying characteristics of the signal, the wavelet transform 

suffers from selection difficulties and redundancy problems, 

while the STFT is able to provide both time-domain and 

frequency-domain information[11]. In recent years, a 

lightweight convolutional neural network (CNN) combined 

with an attention mechanism (SAM) has demonstrated 

superior performance in fault diagnosis, especially in fault 

feature extraction of vibration signals, which can effectively 

improve diagnostic accuracy[12]. 

Although the above methods have achieved certain results, 

with the increased complexity of modern industrial equipment, 

the vibration signals are often accompanied by a large amount 

of noise, which affects the fault feature extraction. VMD 

effectively isolates the useful signals from the noise by 

decomposing the signals into modal functions (IMFs) with 

different center frequencies, which improves diagnostic 

accuracy and robustness[15]. Yang[17] proposed a rolling 

bearing state feature extraction method combining VMD and 

Improved Envelope Spectral Entropy (IESE) to further 

improve the fault diagnosis performance. 

 

However, all of the above methods perform feature extraction 

through a single branch, which can easily lead to insufficient 

extraction of fault features and affect the results. In this paper, 

a three-branch convolutional neural network (CNN) model 

combining STFT transform and VMD is proposed. The model 

takes the original signal, the features extracted by the STFT 

transform, and the features extracted by the VMD as inputs 

and performs feature fusion through the multi-branch CNN 

structure and the attention mechanism, finally realizing 

efficient rolling bearing fault classification. The model assigns 

different weights to each branch through the attention 

mechanism for feature fusion, and the value of the weights is 

determined according to the contribution of each branch to the 

classification result. The model can extract the features of the 

fault more comprehensively, which in turn improves the 

accuracy and robustness of fault diagnosis. 

1.1 STFT transformation 

STFT, also known as plus window Fourier transform, 

transforms a one-dimensional signal into a two-dimensional 

matrix containing time-frequency information by multiplying 

the signal with a window function and then performing a 



2 
 

Fourier transform on each short-time window. STFT obtains 

the frequency spectrum of different time periods through the 

sliding-window function and generates time-frequency maps, 

which can be used as inputs to 2D CNNs to improve the fault 

diagnosis effect of mechanical vibration signals. Calculation 

formula below: 

            𝑆𝑇𝐹𝑇𝑥
𝑥(𝑡, 𝜔) = ∫ 𝑥(𝑡)ℎ(𝑡 − 𝜔)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞
  (1) 

where: x(t) is the time domain signal; h(t-ω) is the window 

function. 

1.2 VMD 

The VMD algorithm is a method for decomposing a signal into 

multiple intrinsic modal components (IMFs) in a completely 

non-recursive manner. To obtain the bandwidths and marginal 

spectra of the IMFs, the Hilbert transform can be applied to the 

modal functions to obtain a one-sided spectrum, which is 

shifted to the baseband. The sub-bandwidth of the IMF is 

determined by calculating the squared parameter of the 

gradient, which is modeled as follows for the variational 

problem. 

 
𝑚𝑖𝑛

|𝑢𝑘|,|𝜔𝑘|
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖ 2

2
𝐾
𝑘=1 }            (2) 

                                   𝑠. 𝑡. ∑ 𝑢𝑘 = 𝑓(𝑡)𝐾
𝑘=1                      (3) 

 
where: f(t) is the input signal; δ (t) is the Dirac function; K 

denotes the number of modes decomposed; 

{uk}={u1 ,u2 ,u3 ,...,uk } denotes the kth modal component after 

decomposition; {𝜔𝑘}={𝜔1,𝜔2, 𝜔3,...,𝜔𝑘 } denotes the center 

frequency of the kth modal component after decomposition. 

2. Methodology 

2.1 Model architecture 

In this paper, we propose a bearing fault diagnosis method 

based on a multi-branch convolutional neural network. The 

model is a three-branch convolutional neural network (CNN) 

for the task of bearing fault diagnosis. Bearing fault diagnosis 

model of the multi-branch convolutional neural network is 

shown in Fig. 1. In its structure, the original signal, the modal 

signal obtained through variational modal decomposition 

(VMD), and the time-frequency spectrogram after STFT 

transformation are used as three input branches, respectively.  

 

Fig. 1 Model of this paper 

 

The outputs of the three branches are fused with features 

through the attention mechanism, which assigns learnable 

weights to different features so that the model can 

automatically assign important information to highlight 

effective features. This fusion process retains the global 

information of the original signal and, at the same time, 

combines the frequency band features from the VMD 

decomposition and the time-frequency information from the 

STFT transform to enhance the discriminative power of the 

model. Finally, the classification prediction of the input signal 

is completed by the classification layer. The overall structure 

gives full play to the advantages of VMD and STFT transform 

and improves the classification accuracy and robustness of 

bearing faults. The fault diagnosis process is shown in Figure 

2. 
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Fig. 2 Bearing fault diagnosis process of multi-branch 

convolutional neural network 

3 Results 

3.1 Experimental data 

In order to verify the validity of the above model, this paper 

comes from the bearing dataset provided by Case Western 

Reserve University (CWRU) for specific experiments, and the 

data of the motor bearings used are collected from the bearings 

of model 6205-2RS JEM SKF with a rotational speed of 1772 

r/min. The CWRU dataset used in this paper has a total of 10 

classes of fault data, which categorize the bearing health status 

into normal, inner ring fault, outer ring fault, and rolling 

element fault, and each fault is divided into three fault levels 

according to the fault size (0.007 mm, 0.014 mm, and 0.021 

mm). The dataset consists of 200 samples for each category, a 

total of 2000 samples, and each sample data comes from 1024 

collection points, which are divided into training sets and test 

sets according to 8:2. As shown in Table 1. 
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Table 1. Description of the CWRU rolling bearing data set 

 

Bearing 

condition 
Degree of failure/mm 

numbered 

label 

normalcy 0 0 

Rolling body 

failure 

0.007 1 

0.014 2 

0.021 3 

Inner ring failure 

0.007 4 

0.014 5 

0.021 6 

Outer ring failure 

0.007 7 

0.014 8 

0.021 9 

3.2 Experimental results 

The model proposed in this paper classifies faults through 

three branches. A dropout layer is added to the model to 

prevent overfitting. The learning rate is set to 0.001, with 64 

training samples input at each step, and a total of 70 iterations. 

The accuracy and loss curves of the multi-branch 

convolutional neural network are shown in Figure 3. 

 

 
 

Fig. 3 Accuracy of the proposed methodology and losses 

In Fig. 3, as the number of iterations increases, the accuracy 

curve gradually increases and tends to stabilize the trend, and 

after about 40 iterations, it starts to converge, and the 

diagnostic accuracy of the trained network reaches 99.75%. 

The confusion matrix of the test results is shown in Fig. 4 

 
 

Fig. 4 Confusion matrix of test results 

In order to verify the superiority of the method proposed in this 

paper. The accuracy is recorded after 10 repetitions of the 

experiment, and the average value is taken to get the accuracy 

the model is compared with several other common fault 

diagnosis models under the same dataset, and the accuracy of 

the proposed method under the same data samples is higher 

than that of the other comparative networks as can be seen in 

Table 2. 

 

Table 2. Comparison of accuracy of different methods 

 

methodologies % accuracy 

random forest 73.80 

SVM 75.05 

VMD+CNN 95.10 

STFT+CNN 97.25 

proposed methodology 99.55 

 

In order to verify the superiority of the proposed method 

against noise, Gaussian white noise with a signal-to-noise ratio 

of 5 is added to the dataset used in the above experiments to 

simulate the situation where the industrial generation 

overshoots contain noise. The model proposed in this paper is 

compared with the above model because the random forest and 

SVM do not work well without adding noise, so only the 

remaining two are compared. The comparison results are 

shown in Table 3. 

 

Table 3. Comparison of accuracy of different methods for 

SRN=5 

 

methodologies % accuracy 

VMD+CNN 95.05 

STFT+CNN 94.50 

proposed methodology 99.35 

 

4 Conclusion 

To address the challenges faced by traditional single-channel 

signal-based bearing fault diagnosis methods, such as 

susceptibility to noise interference, insufficient feature 

extraction, and difficulty in adapting to complex working 

conditions, this paper proposes a multi-branch convolutional 

neural network-based bearing fault diagnosis method. The 

proposed approach is validated on the CWRU dataset, and 

experimental results demonstrate its superior performance in 

fault diagnosis tasks. The model incorporates three feature 

extraction branches, integrating Variational Mode 

Decomposition (VMD) and Short-Time Fourier Transform 

(STFT), while employing an attention mechanism for feature 

fusion to enhance multi-scale feature extraction capabilities. 

This method not only improves the recognition of complex 

fault patterns but also significantly enhances diagnostic 

accuracy and robustness. 
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