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Abstract

Accurate photovoltaic (PV) power generation forecasting plays a pivotal role in enabling optimal grid dispatch operations by
providing essential technical references for power system scheduling. To address the challenges of complex meteorological
patterns and sudden environmental variations, a photovoltaic power forecasting model named the LSTM-KAN (Long Short-
Term Memory - Kolmogorov-Arnold Network) Hybrid Architecture is proposed, with an attention mechanism introduced to
enhance model robustness. To investigate the correlation between Numerical Weather Prediction (NWP) features and power
output, a multi-dimensional feature selection mechanism was integrated into the data preprocessing phase. To validate the
superior performance of the proposed model, photovoltaic operational data from the Alice Springs region in Australia was
employed for experimental verification, with comparative analysis conducted against conventional LSTM models in terms of
both prediction error and operational stability. Experimental results demonstrated that the LSTM-KAN model achieves 12.04%
and 13.26% reductions in MAE and RMSE respectively compared to the baseline LSTM model when evaluated on the Dual

dataset.

1 Introduction

Currently, the pressing issues stemming from excessive
consumption of conventional energy resources - including
resource depletion, carbon emissions, and ecological
degradation - demand urgent resolution. The development of
green energy has emerged as a viable solution to mitigate
overreliance on conventional energy. Although photovoltaic
power plants require substantial capital investment during
initial construction, their subsequent operational expenditures
remain relatively modest, necessitating only routine
maintenance to ensure stable functioning post-commissioning.
However, photovoltaic generation exhibits high susceptibility
to environmental fluctuations, posing challenges for grid
management and practical implementation. As demonstrated
by Rettger et al., cloud cover can reduce power output by
approximately 10% compared with clear-sky conditions, while
elevated panel surface temperatures induce additional power
degradation[1]. Therefore, investigating the correlation
between meteorological factors and photovoltaic output
constitutes a critical technological prerequisite for commercial
viability, underscoring the paramount importance of accurate
photovoltaic power forecasting.

Photovoltaic power forecasting methodologies primarily
encompass statistical methods, physical approaches, and
machine learning techniques. Statistical methods rely on
historical data to construct predictive models, typically
operating under the assumption that future photovoltaic output
can be extrapolated from historical patterns. However, these
methods exhibit limitations in handling extreme weather

events and data outliers. Physical approaches leverage
meteorological data and photovoltaic component parameters
to formulate predictive models, yet require exhaustive input
parameters that contribute to computational complexity.
Machine learning techniques learn complex patterns of
photovoltaic power output through training datasets,
effectively capturing nonlinear relationships and intricate
mappings between power generation and meteorological
parameters. Representative approaches include Support
Vector Regression (SVR) and Deep Neural Networks (DNNs)
[2-3]. J Shi et al. investigated the application potential of deep
learning in photovoltaic power forecasting, highlighting the
synergistic integration between algorithmic frameworks and
power generation system characteristics[4]. Chen et al.
proposed a methodology employing Pearson correlation-based
feature extraction for dimensionality reduction, thus
alleviating the computational burden on Long Short-Term
Memory (LSTM) models[5]. Liu et al. used the PCA method
to process the input data for wind power generation prediction,
reducing the dimension of the input variables and effectively
screening the input wvariables that affect wind power
generation[6].Wang et al. developed a hybrid architecture
combining LSTM and Convolutional Neural Network (CNN)
models, employing LSTM networks for temporal feature
extraction and subsequently applying CNN architectures for
spatial feature extraction, thereby improving the accuracy of
time-series forecasting[7]. A. Agga et al. proposed a CNN-
LSTM hybrid architecture, utilizing CNN modules to extract
localized features as input for LSTM networks, with empirical
validation demonstrating superior performance in both
localized and global forecasting compared to standalone



LSTM configurations, across temporal horizons ranging from
24-hour to 7-day ahead forecasting. Quantitative results
revealed that the proposed methodology achieved enhanced
accuracy metrics relative to conventional LSTM-based
benchmarks [8-9]. Lim et al. developed a CNN-LSTM
architecture that initially employs CNN modules to classify
meteorological conditions into clear-sky and cloudy categories,
followed by training two distinct LSTM networks for
specialized learning. This parallel computational framework
demonstrated enhanced accuracy in power generation
forecasting. Most machine learning methodologies are
fundamentally extensions of the Multilayer Perceptron (MLP)
paradigm[10]. MLP are fundamentally constructed by
enveloping linear models with nonlinear activation functions
to achieve transformations in nonlinear spaces, which
necessitate increasing the number of hidden layers or enlarging
parameter quantities to enhance prediction accuracy when
handling intricate nonlinear relationships, thereby incurring
elevated computational burdens.

The KAN (Kolmogorov-Arnold Network) model was
proposed by researchers Liu Z et al., originating from the
Kolmogorov-Arnold Representation Theorem, which asserts
that any multivariate continuous function can be decomposed
into finite compositions and additive superposition of
univariate continuous functions[11]. Within neural network
architectures, this principle is manifested through dynamically
optimized activation functions and data-driven learning
mechanisms, in contrast to the static functional forms of
conventional models. Empirical validation demonstrates that
KAN achieves dual advantages of high predictive accuracy
and enhanced interpretability, with its exceptional nonlinear
learning capability being underscored by Liu Z et al. in their
seminal work. This research direction has garnered increasing
attention within the academic community. As demonstrated by
C. J. Vaca-Rubio et al. in applying the KAN to satellite traffic
prediction, the framework was found to require fewer
parameters than MLP models while demonstrating superior
predictive performance[12]. The LSTM-KAN (Long Short-
Term Memory — Kolmogorov-Arnold Network) model
proposed by R. Xu et al. integrates the memory retention
capability of LSTM with the nonlinear representational
capacity of KAN, effectively mitigating the limitations of
individual models in processing complex datasets associated
with dam deformation prediction, while enhancing model
interpretability[13]. Jiang et al. applied the KAN to power grid
load forecasting, highlighting its superior interpretability as a
white-box model[14], thereby demonstrating its applicability
to photovoltaic power output prediction domains requiring
stringent reliability and safety requirements.

To address the aforementioned challenges, we propose a
hybrid LSTM-KAN model specifically designed for
photovoltaic time-series data analysis and forecasting. The
proposed network adopts a parallel structure of branched
LSTM-KAN model. To mitigate computational complexity,
eliminate redundant computational expenditure, and suppress
spurious noise, a multi-feature selection mechanism is
employed for dimensionality reduction. The LSTM module is
selected for its demonstrated efficacy in capturing temporal

power variation patterns, while the KAN network leverages
data-driven spline functions and basis functions to
autonomously learn intricate nonlinear patterns, exhibiting
enhanced representational capacity with mathematical
guarantees. Independent feature extraction from both
pathways is concatenated to form composite features, with a
dynamic fusion gate adaptively allocating feature weights. By
synergistically integrating LSTM's temporal dependency
modeling and KAN's nonlinear mapping capabilities, the
model achieves superior comprehensive performance.

The principal contributions of this study are summarized as
follows:

The model named LSTM-KAN Hybrid Architecture was
proposed. To solve the problem of insufficient nonlinear fitting
of the prediction model, the KAN network is added on the
basis of the prediction of the LSTM network, and the feature
weights are dynamically allocated in combination with the
attention mechanism. A model named LSTM-KAN is
proposed. In the feature fusion part of this model, a dynamic
fusion gate is introduced to enable the model to reasonably
allocate the feature weights of the two networks. During the
implementation process, compared with the benchmark LSTM
model, the MAE and RMSE of this model decreased by 27.6%
and 1.4% respectively.

A preprocessing framework integrating multi-dimensional
feature selection mechanisms is proposed. To solve the
problem of large computational volume and multiple feature
dimensions of the model, multiple feature selection
mechanisms are proposed to jointly screen NWP features. In
the data preprocessing part, the feature space dimension is
effectively reduced while retaining highly predictive features,
thereby improving the computational efficiency.

2 Theoretical Foundation

2.1 Physical and statistical prediction methodologies

Physical methodologies employ solar irradiance and
photovoltaic component operation parameters for forecasting,
requiring detailed geolocation parameters (latitude/longitude)
of PV plants and localized irradiance measurements[15], this
methodology obviates the need for extensive historical
datasets, rendering it particularly suitable for performance
evaluation of newly constructed photovoltaic facilities.

Statistical approaches necessitate extensive historical datasets,
including plant power outputs, meteorological records, and
operational histories, to discern site-specific generation
patterns. These methods exhibit limited portability and are
constrained by static prediction frameworks that fail to capture
dynamic environmental perturbations.

2.2 Long short-term memory

Machine learning methodologies exhibit superior predictive
flexibility compared to conventional physical and statistical
forecasting approaches, enabling dynamic capture of
temporal-spatial feature dependencies. A representative
example is the LSTM network, originally proposed by



Hochreiter et al, which constitutes a specialized variant of
Recurrent Neural Networks (RNNs). LSTM addresses the
vanishing gradient problem through gating mechanisms[16].
When photovoltaic power inputs exhibit significant
intermittency, traditional RNN architectures—particularly
those incorporating sigmoid-activated or tanh-activated
units—may fail to effectively learn inter-data temporal
dependencies under such conditions[17]. The LSTM cell
architecture incorporates gating functions, which effectively
address long-term dependency challenges and demonstrate
superior performance in managing multivariate time-series
data. Through its specialized tri-gate structure—comprising
input gates, forget gates, and output gates—LSTM
successfully mitigates gradient vanishing/explosion issues
inherent in RNNs, thereby enhancing long-sequence
dependency modeling[18-19]. The architecture diagram of the
LSTM network illustrates in Fig. 1, where i_t denotes the
output of the input gate, f t represents the output of the forget
gate, o_t corresponds to the output of the output gate.
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Fig. 1 LSTM network architecture diagram

The core mathematical equations and operational mechanisms
are delineated as follows:

fi=o(Wx +Uh_ +b,) (1)
i, =c(Wx,+Uh_ +b,) 2)
¢, =tanh(W,x, +U_h,) 3)
¢, =fOc+iOC, 4
o,=c(W,x,+U,h_ +b,) %)
h =o, Otanh(c[) (6)

The forget gate determines the retention proportion of
historical memory, where: W f , U f denotes the weight
matrix, b f represents the bias term, and o signifies the
Sigmoid activation function with output constrained to [0,1].
The input gate filters newly acquired information for state
updating,while the cell state update integrates outputs from
both forget and input gates to refresh long-term memory
storage. The output gate regulates information exposure from
current cell states to downstream layers. LSTM networks
demonstrate exceptional performance in multivariate time-

series data analysis, particularly in domains such as natural
language processing, energy forecasting, and industrial
monitoring, where they have gained widespread adoption.
This motivates our selection of LSTM architecture to capture
temporal dependencies among feature variables.

2.3 Kolmogorov-Arnold network

KAN is an innovative model derived from the Kolmogorov-
Arnold Representation Theorem. The theorem's core assertion
states: Any multivariate continuous function f defined on a
bounded domain can be decomposed into a finite composition
of univariate continuous functions combined through additive
superposition. Specifically, for a smooth function, this
decomposition can be explicitly formulated as shown in
Equation 7.

2n+1

f(x) = Z q)i( i ¢f,,/fo (7

The innovation of KAN lies in its integration of learnable
activation functions on network edges, where univariate spline
functions replace the fixed linear weights of conventional
architectures. These activation functions are dynamically
refined during training to achieve precise approximation of
complex functional relationships. As illustrated in Fig. 2, KAN
adopts a two-layer architecture where edge-based activation
functions (denoted by rectangular boxes) directly perform
nonlinear transformations on input features. This design
overcomes the limitations of traditional MLP architectures that
rigidly couple linear combinations with fixed activation
functions.

Output Layer

Hidden Layers

Input Layer

Fig. 2 KAN network architecture Diagram

KAN innovatively incorporates learnable activation functions
on network edges, where these functions are dynamically
adapted during training through univariate spline functions
that effectively replace conventional network weight
parameters[20]. Diverging from conventional methodologies,
this approach not only preserves architectural flexibility but
also achieves precise approximation of complex functional
mappings.



3  Proposed Method

3.1 LSTM-KAN Hybrid Architecture

This paper proposes a novel LSTM-KAN predictive model
that synergistically integrates LSTM's temporal dependency
modeling with KAN's dynamic nonlinear representation
capabilities. The LSTM module employs a two-layer
architecture for temporal feature extraction from photovoltaic
data, while the KAN module utilizes residual networks for
enhanced feature learning. A dynamic fusion gate
concatenates outputs from both streams, adaptively adjusting
their contributions through gating mechanisms. Furthermore,
an attention mechanism is incorporated to adaptively allocate
feature weights, enabling robust predictions under complex
environmental disturbances. As depicted in Fig. 3, the
architecture comprises three core components:
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Fig. 3 LSTM-KAN Hybrid Architecture

3.2 LSTM-KAN hybrid architecture

This study employs a hybrid feature selection methodology to
construct a multidimensional analytical framework based on
NWP parameters, Utilizing a four-dimensional evaluation
system comprising Pearson correlation coefficients, Mutual
Information Criteria (MIC), Simple Linear Regression (SLR),
and Recursive Feature Elimination (RFE). As shown in Table
1, the system reveals the influence of parameters such as
Wind-S(Wind-Speed), T(Temperature), H(humidity), G-
I(Global Irradiance), D-I(Diffuse Irradiance), Wind-D(Wind
Direction), Rainfall , R-G-T(Radiation Global Tilted) and R-
D-T(Radiation Diffuse Tilted) on photovoltaic power.
Geometric optimization of the evaluation results is achieved
through vector synthesis of feature scores. The calculation for
mula for the Score is expressed as the normalized result

ofVP2 + M2 + S2 + R2 In predictive model construction, the

precise identification of photovoltaic-relevant features
coupled with the elimination of noisy and redundant variables
can significantly enhance the predictive accuracy and
operational reliability of the system.

Table 1. Feature Correlation Scores of Meteorological
Parameters Across Three Datasets (Pearson/MIC/SLR/RFE)

Data Features Pears MIC SLR RFE Score
set on
T 0.420 0.208 0.177 0.286 0.214
H -046 0.184 0.208 0.571 0.300
G-I 0.982 1.452 0965 0.857 0.883
San D-I 0.590 0.991 0.348 0.714 0.559
Yo Wind D 0.009 0.115 0.000 0.143 0.050
Rainfall -0.06 0.025 0.004 0.000 0.000
R-G-T 0.997 1.744 0994 1.000 1.000
R-D-T 0.628 1.028 0.395 0.429 0.533
Wind-S 0.618 0.286 0.382 0.250 0.372
T 0.500 0.220 0.250 0.625 0.395
H -048 0.220 0.232 0375 0.307
G-I 0.951 1.236 0904 0.750 0.934
Dual D-I 0.521 0.993 0.272 0.500 0.589
Wind-D -0.07 0.145 0.005 0.125 0.066
Rainfall 0.072 0.003 0.000 0.000 0.000
R-G-T 0.964 1.000 0.930 1.000 1.000
R-D-T 0.552 0.839 0.305 0.875 0.690
T 0.401 0.212 0.161 0.714 0.358
H -046 0.199 0211 0.143 0.222
BP G-I 0.973 1.377 0946 0.857 0.924
Sola D—'I 0.570 0.961 0.325 0.571 0.554
. Wind-D  0.007 0.121 0.000 0.429 0.170
Rainfall -0.06 0.035 0.004 0.000 0.000
R-G-T 0.990 1.505 0.981 1.000 1.000
R-D-T 0.606 1.013 0.368 0.286 0.542
As evidenced in Table 1, distinct feature selection

methodologies yield divergent evaluations for identical
features. hrough multi-method integrated evaluation, key
features are more reliably identified. For instance,
Temperature exhibits consistently high correlation coefficients
with photovoltaic power output in the DKASC system[21].
Whereas Humidity demonstrates a Pearson correlation
coefficient of -0.456, indicating a negative correlation with
power generation--though its influence remains non-negligible.
Notably, Global irradiance and Radiation Global Tilted
exhibit statistically significant correlations, while Wind
Direction and Rainfall show weaker predictive associations.
Following normalization, features with composite scores
exceeding 0.1 are selected as primary inputs for both LSTM
and KAN modules.

3.3 Dual-Branch processing layer and dynamic fusion gate

The proposed LSTM-KAN model processes preprocessed
features through dual pathways: a bidirectional LSTM branch
captures dynamic evolution patterns of environmental
parameters via temporal gating mechanisms, whereas the
KAN branch employs adaptive spline networks. Specifically,



after feature selection and standardization (e.g., temperature,
global irradiance), the first LSTM layer utilizes forget gates to
filter irrelevant historical data and input gates to regulate
update intensity, thereby modeling hysteresis effects in
parameters like humidity. The second LSTM layer captures
long-term dependencies through cell state propagation, while
an attention layer computes time-step-specific hidden state
weights via learnable parameter matrices, enhancing feature
representation at critical temporal nodes (e.g., daily solar
irradiance peaks). In the KAN pathway, adaptive spline
networks construct nonlinear mappings using B-spline basis
functions. Each neuron fits complex feature-power
relationships (e.g., saturation characteristics in irradiance-
power curves). Attention mechanisms dynamically weight
input features to prioritize critical factors like temperature
anomalies, and residual connections stabilize deep network

training by fusing raw features with high-order representations.

A dynamic fusion gate adaptively allocates weights between
the dual pathways through learnable gating functions
(Equations 8-9).

g =0 (W, xReLU(W, x[I,,:h,, ]+ b, ) +5, ) (8)

h=g hy, +(1-2)hy, ©)
hysem 18 the temporal- vector extracted by the LSTM, hyq, is
the feature vector from the KAN, W, represents the projection
matrix for the concatenated vect or, W is the matrix for
generating gating scalars, o denotes the Sigmoid activation
function.

4 Experiments and Results Analysis

4.1 Experimental setup

This study utilizes three photovoltaic datasets from the
DKASC system in Alice Springs, Australia: San Yo (ground-
mounted fixed-tilt, January 1, 2018 - September 1,2018), Dual
(dual-axis tracking, March 1, 2015 - July 31, 2015), BP Solar
(roof-mounted fixed-tilt, January 20, 2018 - July 31, 2018).
The datasets record parameters including current, power,
temperature, humidity, global horizontal irradiance
(G_irradiance), and direct normal irradiance (D _irradiance) at
S-minute intervals. Experimental validation was conducted by
comparing the performance of the proposed LSTM-KAN
model against classical LSTM and standalone KAN
architectures. All models were trained using the Mean Squared
Error (MSE) loss function with an Adam optimizer (learning
rate: le-3, batch size: 1024, epochs: 1000). Input features were
standardized via Z-score normalization and split into training-
test sets with an 8:2 ratio.

4.2 Evaluation Metrics

To analyze the predictive performance of different algorithms
across datasets, we select MAE (Mean Absolute Error), RMSE
(Root Mean Square Error), and R? (Coefficient of
Determination) as evaluation metrics. MAE provides the
average level of prediction bias, MRSE reveals the stability of
the prediction, and R2 reflects the degree of model fit.

(10)

(11)

N 2
X2
R>=1-&L "

N _
Z:, (yi - y)
In the above formulas: N is the total number of samples, i is
the counting variable, y_iis the true value, (y_i)"is the model's
predicted value and y is the sample mean of the dependent
variable.

(12)

4.3 Evaluation metrics

Experimental results on the San Yo dataset demonstrate that
LSTM-KAN model achieves a marginal improvement in MAE
compared to standalone LSTM. However, with the
incorporation of attention mechanisms, the LSTM-KAN-A
model reduces MAE and RMSE by 27.6% and 1.4%,
respectively, compared to the baseline LSTM model, and also
outperforms LSTM-KAN model. This indicates that
introducing attention mechanisms enhances the dynamic
adjustment of weights between LSTM model and residual
networks. Furthermore, on the more complex Dual dataset,
LSTM-KAN model reduces MAE, RMSE, and R? by 12.04%,
13.26%, and 1.34%, respectively, compared to standalone
LSTM model, while LSTM-KAN-A model exhibits superior
performance over LSTM-KAN model after attention
integration. Table 2 compares the predictive performance
(MAE, RMSE, R?) of the four models across three distinct
datasets.

Table 2. Predictive Performance Comparison of Four Models

Dataset  Predictive  MAE/KW RMSE/KW R2/%
Model
LSTM 0.0623 0.0972 0.9978
KAN 0.1499 0.1845 0.992
San Yo LSTM- 0.0621 0.1119 0.9971
KAN
LSTM- 0.0451 0.0958 0.9979
KAN-A
LSTM 1.1574 2.2416 0.9487
KAN 1.2201 2.193 0.9509
Dual LSTM- 1.0181 1.9441 0.9614
KAN
LSTM- 0.9144 1.7873 0.9674
KAN-A
LSTM 0.0456 0.1043 0.9941
KAN 0.0588 0.1077 0.9937
BP LSTM- 0.0446 0.0963 0.9949
Solarl KAN
LSTM- 0.0339 0.0928 0.9953
KAN-A




Fig 4 to 6 compare the prediction results of four models against
actual photovoltaic power across different datasets, with one
representative day selected for each comparison. Taking the
San Yo dataset as an example, the predictions of all four
models on the August 28 test set are closely aligned with
ground truth values. However, as evidenced by the zoomed-in
views, the LSTM-KAN-A model most accurately tracks the
actual power output.
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Fig. 4 Experimental Comparison Curves for the San Yo
Dataset
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Fig. 6 Experimental Comparison Curves for the BP Solarl
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5 Conclusion

To address photovoltaic power prediction challenges, this
study proposes an LSTM-KAN Hybrid Architecture by
integrating the KAN with superior nonlinear approximation
capabilities. The proposed framework incorporates attention
mechanisms to adaptively allocate feature weights, thereby
enhancing robustness against transient disturbances (e.g.,
irradiance  fluctuations and cloud occlusion events).
Additionally, it employs multi-criteria feature selection
mechanisms to jointly screen NWP features, effectively
reducing model parameter dimensionality. Experimental
validation demonstrates the LSTM-KAN model's superior
performance on the DKASC photovoltaic system data from
Alice Springs, Australia, showing promising potential for
engineering applications in renewable energy dispatch systems,
such as photovoltaic power prediction and grid integration.
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